首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   7篇
  国内免费   30篇
测绘学   1篇
大气科学   54篇
地球物理   6篇
地质学   1篇
海洋学   5篇
自然地理   2篇
  2022年   4篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   6篇
  2016年   3篇
  2015年   4篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   3篇
  2010年   5篇
  2009年   4篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   6篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
排序方式: 共有69条查询结果,搜索用时 15 毫秒
1.
模式所需要的参数被合理地设置之后, 根据GAME/ Tibet (GEWEX亚洲季风试验/青藏高原试验) 那曲近地层观测站的资料, 将大气强迫变量代入SiB2(Simple Biosphere model version2), 文章模拟了该观测站地表能量收支。结果表明:SiB2能够较好地模拟青藏高原的能量收支情况, 净辐射、潜热通量和土壤热通量的模拟值和观测值吻合, 它们的相对误差分别为8% (低估)、6% (低估) 和3 %(低估)。同时, SiB2高估感热通量达40%。文章还给出了能量各分量的详细比较分析。  相似文献   
2.
The vertical structures and their dynamical character of PM2.5 and PM10 over Beijing urban areas are revealed using the 1 min mean continuous mass concentration data of PM2.5 and PM10 at 8, 100, and 320 m heights of the meteorological observation tower of 325 m at Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP CAS tower hereafter) on 10―26 August, 2003, as well as the daily mean mass concentration data of PM2.5 and PM10 and the continuous data of CO and NO2 at 8, 100 (low layer), 200 (middle layer), and 320 m (high layer) heights, in combination with the same period meteorological field observation data of the meteorological tower. The vertical distributions of aerosols observed on IAP CAS tower in Beijing can be roughly divided into two patterns: gradually and rapidly decreasing patterns, I.e. The vertical distribution of aerosols in calm weather or on pollution day belongs to the gradually decreasing pattern, while one on clean day or weak cold air day belongs to the rapidly decreasing pattern. The vertical distributive characters of aerosols were closely related with the dynamical/thermal structure and turbulence character of the atmosphere boundary layer. On the clean day, the low layer PM2.5 and PM10 concentrations were close to those at 8 m height, while the concentrations rapidly decreased at the high layer, and their values were only one half of those at 8 m, especially, the concentration of PM2.5 dropped even more. On the clean day, there existed stronger turbulence below 150 m, aerosols were well mixed, but blocked by the more stronger inversion layer aloft, and meanwhile, at various heights, especially in the high layer, the horizontal wind speed was larger, resulting in the rapid decrease of aerosol concentration, I.e. Resulting in the obvious vertical difference of aerosol concentrations between the low and high layers. On the pollution day, the concentrations of PM2.5 and PM10 at the low, middle, and high layers dropped successively by, on average, about 10% for each layer in comparison with those at 8 m height. On pollution days, in company with the low wind speed, there existed two shallow inversion layers in the boundary layer, but aerosols might be, to some extent, mixed below the inversion layer, therefore, on the pollution day the concentrations of PM2.5 and PM10 dropped with height slowly; and the observational results also show that the concentrations at 320 m height were obviously high under SW and SE winds, but at other heights, the concentrations were not correlated with wind directions. The computational results of footprint analysis suggest that this was due to the fact that the 320 m height was impacted by the pollutants transfer of southerly flow from the southern peripheral heavier polluted areas, such as Baoding, and Shijiazhuang of Hebei Province, Tianjin, and Shandong Province, etc., while the low layer was only affected by Beijing's local pollution source. The computational results of power spectra and periods preliminarily reveal that under the condition of calm weather, the periods of PM10 concentration at various heights of the tower were on the order of minutes, while in cases of larger wind speed, the concentrations of PM2.5 and PM10 at 320 m height not only had the short periods of minute-order, but also the longer periods of hour order. Consistent with the conclusion previously drawn by Ding et al., that air pollutants at different heights and at different sites in Beijing had the character of "in-phase" variation, was also observed for the diurnal variation and mean diurnal variation of PM2.5 and PM10 at various heights of the tower in this experiment, again confirming the "in-phase" temporal/spatial distributive character of air pollutants in the urban canopy of Beijing. The gentle double-peak character of the mean diurnal variation of PM2.5 and PM10 was closely related with the evident/similar diurnal variation of turbulent momentum fluxes, sensible heat fluxes, and turbulent kinetic energy at various heights in the urban canopy. Besides, under the condition of calm weather, the concentration of PM2.5 and PM10 declined with height slowly, it was 90% of 8 m concentration at the low layer, a little lesser than 90% at the middle layer, and 80% at the high layer, respectively. Under the condition of weak cold air weather, the concentration remarkably dropped with height, it was 70% of 8 m concentration at the low layer, and 20%―30% at the middle and high layers, especially the concentration of PM2.5 was even lower.  相似文献   
3.
蒸发波导模型常用来计算海上蒸发波导高度。为了认识当前不同蒸发波导模型之间的差异和方法,本文选取了目前使用广泛的4种蒸发波导模型(即P-J模型、Babin模型、NPS模型和伪折射率模型)进行对比和分析。本文首先探讨了在理想情况下它们对气象要素的敏感性,随后并利用我国南海近海大气层观测试验数据对比了这4种模型的蒸发波导高度计算结果。分析表明:相对湿度、风速和气—海温差的变化对4种模型的计算都有着较大的影响,特别是在不稳定层结状况下,4种模型计算得到的蒸发波导高度都随着相对湿度的增大而降低、随着风速的增大而增高。Babin模型和NPS模型计算的波导高度较为一致,伪折射率模型与前两种模型的计算结果存在差异,而P-J模型与其他3种模型存在较明显的偏差。基于南海气象数据的计算结果表明,不同蒸发波导模型在该海域蒸发波导的模拟结果略有不同,但4种模型计算得到的波导高度日变化变化趋势较为一致,波导高度极低值常出现在早晨,而极高值常出现在傍晚。  相似文献   
4.
It is of major scientific interests to determine the parameters of momentum, heat and vapor exchange in the planetary boundary layer in order to study the effects of ocean-ice-atmosphere interactions and their feedback mechanisms on global climate[1]. Lin…  相似文献   
5.
Using the Simple Biosphere Model (SiB2), soil thermal properties (STP) were examined in a Tibetan prairie during the monsoon period to investigate ground surface temperature prediction. We improved the SiB2 model by incorporating a revised force-restore method (FRM) to take the vertical heterogeneity of soil thermal diffusivity (k) into account. The results indicate that (1) the revised FRM alleviates daytime overestimation and nighttime underestimation in modeled ground surface temperature (Tg), and (2) its role in little rainfall events is significant because the vertical gradient of k increases with increasing surface evaporation. Since the original formula of thermal conductivity (λ) in the SiB2 greatly underestimates soil thermal conductivity, we compared five algorithms of λ involving soil moisture to investigate the cause of overestimation during the day and underestimation at night on the basis of the revised FRM. The results show that (1) the five algorithms significantly improve Tg prediction, especially in daytime, and (2) taking one of these five algorithms as an example, the simulated Tg values in the daytime are closer to the field measurements than those in the nighttime. The differences between modeled Tg and field measurements are mostly within the margin of error of ±2 K during 3 August to 4 September 1998.  相似文献   
6.
The parameterization of friction velocity, roughness length, and the drag coefficient over coastal zones and open water surfaces enables us to better understand the physical processes of air-water interaction. In context of measurements from the Humidity Exchange over the Sea Main Experiment (HEXMAX), we recently proposed wave-parameter dependent approaches to sea surface friction velocity and the aerodynamic roughness by using the dimensional analysis method. To extend the application of these approaches to a range of natural surface conditions, the present study is to assess this approach by using both coastal shallow (RASEX) and open water surface measurements (Lake Ontario and Grand Banks ERS-1 SAR) where wind speeds were greater than 6.44 m s-1. Friction velocities, the surface aerodynamic roughness, and the neutral drag coefficient estimated by these approaches under moderate wind conditions were compared with the measurements mentioned above. Results showed that the coefficients in these approaches for coastal shallow water surface differ from those for open water surfaces, and that the aerodynamic roughness length in terms of wave age or significant wave height should be treated differently for coastal shallow and open water surfaces.  相似文献   
7.
湍流通量参数化方案的非迭代方法研究   总被引:3,自引:2,他引:1  
基于Högström (1996) 和Beljaars et al.(1991) 的研究工作, 沿用Louis et al.(1982) 和Launiainen (1995) 的思路, 本文采用多元回归分析方法, 研发了一种采用非迭代方法的湍流通量参数化方案。该方案直接用整体理查森数、 空气动力学粗糙度长度和热力学粗糙度长度对稳定度参数进行参数化, 从而避免了通过循环迭代计算Monin-Obukhov长度。该方案不仅有效地节省了CPU计算时间, 而且其计算结果与迭代方案 (BHH方案) 的计算结果非常接近。  相似文献   
8.
两种土壤温度算法的对比分析   总被引:8,自引:1,他引:7  
为了定量理解黄土高原土壤的物理特性和过程, 为进一步提高陆面模式对该地区地表能量平衡模拟能力奠定基础, 本文利用2005年黄土高原陆面过程试验中7月22~26日期间裸土地表观测站土壤温度观测资料, 采用热传导(结合数学拟合法)、热传导-对流两种方法分别计算了该地区土壤热扩散率。本文还利用热传导-对流方法计算0.05~0.1 m浅薄土壤层的热扩散率垂直梯度与水通量密度之和, 其值介于0.80×10-6~2.43×10-6m/s之间。在此基础之上, 以0.05 m深度的土壤层为上边界, 分别利用上述两种方法模拟0.10 m深度的土壤层温度, 结果表明: 由于忽略土壤的垂直不均匀性和水分的垂直运动而只考虑热传导过程, 热传导方法不仅高估了土壤温度振幅, 而且高估了位相的延迟。而热传导-对流方法对温度振幅和位相的模拟值与实际观测值吻合较好, 白天 (北京时间08:00~20:00) 的温度模拟值相对测量值的平均误差、 标准差和归一化标准差分别为0.19 K、0.18 K和0.08%。  相似文献   
9.
Based on classic iterative computation results, new equations to calculate the surface turbulent transfer coefficients are proposed, which allow for large ratios of the momentum and heat roughness lengths. Compared to the Launiainen scheme, our proposed scheme generates results closer to classical iterative computations. Under unstable stratification, the relative error in the Launiainen scheme increases linearly with increasing instability, even exceeding 15%, while the relative error of the present scheme is always less than 8.5%. Under stable stratification, the Launiainen scheme uses two equations, one for 0 < Ri B ≤ 0.08 and another for 0.08 < Ri B ≤ 0.2, and does not consider the condition that Ri B > 0.2, while its relative errors in the region 0 < Ri B ≤ 0.2 exceed 31 and 24% for momentum and heat transfer coefficients, respectively. In contrast, the present scheme uses only one equation for 0 < Ri B ≤ 0.2 and another equation for Ri B > 0.2, and the relative error of the present scheme is always less than 14%.  相似文献   
10.
The lack of sufficient direct observation data of typhoon fine structure is the main bottleneck that restricts the further development of typhoon discipline and forecasting. This paper briefly introduced the basic information of the National Key R&D Program of China, entitled “Experiment on Coordinated Observation of Offshore Typhoon in China”, which started in early 2019. Firstly, the importance and necessity of the program around the national needs on typhoon-related disaster reduction and prevention were explained. Then, the coordinated observation difficulties and frontiers in the current typhoon discipline situation from the development and improvement of the physical mechanism and key forecasting technologies were shown. The overview of the direct observation instrument and platform, the field campaign and the parameterization techniques related to physical process in typhoon numerical modeling was provided. Finally, the key scientific and technical issues and main research contents of the program were given.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号