首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
地球物理   3篇
地质学   5篇
海洋学   1篇
综合类   1篇
  2023年   1篇
  2022年   2篇
  2020年   1篇
  2018年   2篇
  2017年   2篇
  2012年   1篇
  2009年   1篇
排序方式: 共有10条查询结果,搜索用时 700 毫秒
1
1.
Presence of aggressive chemicals in ground and groundwater can deteriorate concrete foundations or its reinforcements. Concrete codes require preventive measures to assure durability of concrete foundations which is based on geochemistry information of the site. Construction in the city of Rasht, in the Iranian Caspian coast, is fast growing often without sufficient geochemistry data for residential buildings. The later may pose risk of chemical attacks on concrete foundations. To resolve this shortcoming, this study aimed at investigating geochemistry of ground and groundwater from the upper 10 m which can serve as a preliminary guideline for shallow foundation constructions in the city. The database for this study included previous geochemical investigations from 50 boreholes in the city as well as boring eleven test pits at various locations along with soil and groundwater geochemistry tests. The geochemistry experiments included measurement of sulfate, chloride, organic matter, as well as pH in soil and groundwater. Geochemistry of ground and groundwater in the city mostly fell within permissible limits set by a local concrete code. Based on current study, service environment for shallow concrete foundations in the city was categorized in a moderate class; hence, durability requirements from the same local concrete code were emphasized.  相似文献   
2.
Self-centering rocking walls offer the possibility of minimizing repair costs and downtimes, and also nullify the residual drift after seismic events, thanks to their self-centering properties. In this paper, the effect of axial stress ratio on the behavior of monolithic self-centering rocking walls is investigated by utilizing a developed finite element model. To verify the validity of the finite element model, results and observed damage in the model are compared with those of a full-scale wall test. The axial stress ratio is varied from 0.024 to 0.30 while keeping the other structural parameters constant. For qualitative damage evaluation, the observed damage in the model compared with expected damage states of desired performance levels. In order to evaluate the incurred damage quantitatively, the amount of crushing and damage in the wall is calculated by utilizing several ratios (crushing ratio and damage ratio). Furthermore, seismic response factors (i.e., μ, R and Cd) are calculated for different axial stress ratio values. The obtained results showed that, in order to satisfy the requirements of desired performance levels, the maximum axial stress ratio should be approximately within the range of 0.10–0.15. In addition, the maximum overall damage ratio and crushing ratio are suggested to be less than 5%. For axial stress ratio higher than 0.15, the flag-shaped pattern of hysteresis curves completely disappeared and the variation of displacement ductility is less sensitive to axial stress ratio. Considering the maximum axial stress ratio limited to 0.150, values of 4 and 3.5 are conservatively proposed as a period-independent response modification factor and displacement modification factor of the investigated structural wall, respectively.  相似文献   
3.
High gas production from the Dashtak formation of Tabnak hydrocarbon field in Fars province, Iran, indicates the presence of natural fractured reservoir whose production potential is dominated by the structural fracture. The connectivity of fractured media depends upon the power?Claw exponent and the fracture density. Fracture pattern traces obtained from the outcrops of producing formations of six different stations in Tabnak hydrocarbon field. 2D fracture network maps of Tabnak hydrocarbon field have been analyzed from their scaling properties. The fractal analysis of fracture intensity showed heterogeneous multi-fractal structure characterized by generalized dimensions. Distribution of fracture lengths exhibits power?Claw behavior with specific exponent. Scaling laws serve to make extrapolations and to study the fracture connectivity related to scale. Fracture distribution model and reservoir productivity can be estimated, which are of great interest in decision making to optimize gas production.  相似文献   
4.
5.
Micromorphological evidences of climatic change in Yazd region, Iran   总被引:1,自引:0,他引:1  
The fact of, present is the key of the past, will help us to use paleosols properties as indicators of the ecological characteristics of past .time, particularly the paleoclimate. In this respect the micro- morphological properties showed to be a very good indicator. Therefore, for investigating of climate change in Ardakan-Yazd plain, Central Iran 9 pedons were digged and described. Yazd has an arid climate with less than 100 mm annual precipitation and more than 22℃ mean annual temperature (Aridic-hyper thermic soil moisture and temperature regions, respectively). Based on the morphological and physicochemical analysis Arglic, Calcic and Gypsic diagnostic horizons have been distinguished in these soils. Thin section studied showed that the illuviated form of clay includes, infillings on channel, coating on pendant, on nodules and on grains, at lower depths and also juxtaposed calcite needles on void argillan at upper part of the profiles. Mineralogical result showed fine clay in arglic horizon, too. Considering depth and forms of these pedofeatures, we concluded that, the observed illuviated clays at lower depth must be the result of the more humid climate of the past, where the carbonates have been removed completely as pendant, nodules or coating to considerable depth, following processes, clay has been dispersed and also trans located to these depths. In contrast to these features, the juxtaposed needle calcite at the shallower depth is probably the result of drier climate of today.  相似文献   
6.
Qanat is an ancient underground structure to abstract groundwater without the need for external energy. A recognized world heritage, Qanat has enabled civilization in arid and semi-arid regions that lack perennial surface water resources. These important structures, however, have faced significant challenges in recent decades due to increasing anthropogenic pressures. This study uses remote sensing to investigate land-use changes and the loss of 15,983 Qanat shafts in the Mashhad plain, northeast of Iran, during the past six decades. This entails obtaining a rare aerial imagery from 1961, as well as recent satellite imagery, over a region with the highest density of Qanats in Iran, the birthplace of Qanat. Results showed that only 5.59% of the Qanat shafts in 1961 remained intact in 2021. The most prominent Qanat-impacting land-use changes were agriculture and urban areas, that accounted for 42.93 and 31.81% Qanat shaft destruction in the study area, respectively. This study also showed that groundwater table decline, demographic changes, and reduction in the appeal of working in the Qanat maintenance and construction industry among the new generation are existential threats to Qanats, and may result in the demise of these ancient structures in the future. Findings of this study can be used for urban planning in arid and semi-arid areas with the aim of protecting these historic water structures.  相似文献   
7.
Groundwater vulnerability assessment of urban areas is a challenging task in the fast trend of urbanization around the globe. This study introduces a new approach for modifying well-known parameters of common vulnerability indexes to adjust them for urban areas. The approach is independent of a specific weighting system. The aquifer of Mashhad city, contaminated by domestic wastewater, is selected as a case in this study. In order to evaluate the aquifer vulnerability due to anthropogenic activities, at first, parameters of depth to groundwater, recharge, land use, and soil are modified based on their basic concepts and their influences on contamination attenuation. Then, the modified parameters are used simultaneously in several index methods to investigate the capability of the modified parameters to increase correlation coefficient of all employed index methods with the measured nitrate concentration. Accuracy of the modified methods is evaluated by Spearman nonparametric correlation. It is shown that considering the wastewater discharge into recharge parameter leads to an increase of 20% in correlation coefficient. Also, level difference technique shows that more than 70% of the vulnerable areas are predicted correctly in all utilized methods. The accurate prediction in all employed methods indicates that these modifications are independent of the type of index method. Moreover, sensitivity analysis reveals that the recharge and the land use are both the most significant parameters for evaluating the vulnerability.  相似文献   
8.
This study was undertaken to evaluate land use change impact and management scenarios on annual average surface runoff (SR) and sediment yield (SY) using the GeoWEPP tool in the Lighvanchai watershed (located in northwestern Iran). Following a sensitivity analysis, the WEPP model was calibrated (2005–2007) and validated (2008–2010) against monthly observed SY and SR. The coefficient of determination (R 2), Nash–Sutcliffe efficiency (NSE), mean bias error (MBE), and root-mean-square error (RMSE) were applied to quantitatively evaluate the WEPP model. The results indicate a satisfactory model performance with R 2 > 0.80 and NSE > 0.60. Therefore, the model for current land use (scenario 1) was run for a 30-year time period (1982–2011). The annual average of SR and sediment load were predicted as 93,584 m3/year and 4340 ton/year, respectively. To reduce the annual average surface runoff and sediment yield at the watershed scale, the second scenario (alfalfa cultivation with suitable tillage) and the third scenario (grassland development) as two management scenarios of land use changes were defined by identifying the critical hillslopes. The rate of SR and sediment load in the second scenario were 42,096 m3/year and 429 ton/year, respectively. For the third scenario, the model predictions were 30,239 m3/year and 226 ton/year, respectively. Compared to the first scenario, the reduction rates in annual average of sediment load were about 90 and 94%, respectively. Moreover, for the second and third management scenarios, the reduction rates in annual average of SR were about 55 and 67%, respectively.  相似文献   
9.
Bulletin of Earthquake Engineering - Although self-centering rocking walls have shown acceptable performance in decreasing downtime, repair cost, and continuous serviceability, their energy...  相似文献   
10.
Geotechnical and Geological Engineering - Using the tunnel boring machine (TBM) in tunneling projects contributes significantly to increased efficiency and reducing the time of project...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号