首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   2篇
地球物理   7篇
天文学   2篇
  2021年   3篇
  2017年   1篇
  2015年   1篇
  2013年   1篇
  2007年   1篇
  2004年   1篇
  2002年   1篇
排序方式: 共有9条查询结果,搜索用时 46 毫秒
1
1.
Abstract   The lithology of shallow-water carbonates collected from 19 sites on 16 seamounts in six areas of the northwestern Pacific Ocean using the Deep-sea Boring Machine System are described. The areas include the Amami Plateau, Daito Ridge, Oki-Daito Ridge, Urdaneta Plateau, Kyushu-Palau Ridge and Ogasawara Plateau. Chronological constraint is provided by calcareous nannofossil biostratigraphy, planktonic foraminiferal biostratigraphy, larger foraminiferal biostratigraphy and strontium (Sr) isotope stratigraphy. Large amounts of shallow-water carbonates accumulated on the seamounts during the Oligocene, a relatively cool period, whereas limited carbonate deposits formed during the Early Miocene, a relatively warm period. This might indicate that deposition of shallow-water carbonates on seamounts in the northwestern Pacific Ocean was not necessarily controlled by climatic conditions, but was related to volcanism and tectonics that served as foundations for reef/carbonate-platform formation. Remarkable differences in biotic composition exist between Cretaceous and Cenozoic shallow-water carbonates. Late Cretaceous shallow-water carbonates are distinguished by the occurrence of rudists, solenoporacean algae and microencrusters. Middle Eocene to Early Oligocene shallow-water carbonates are dominated by Halimeda or nummulitid and discocyclinid larger foraminifers. Scleractinian corals became common from the Oligocene onward. Nongeniculate coralline algae and larger foraminifers were common to abundant throughout the Eocene to the Pleistocene. The replacement of major carbonate producers in the shallow-water carbonate factory during post-Cretaceous time is in accordance with previous studies and is considered to reflect a shift in seawater chemistry.  相似文献   
2.
3.
We have constructed self-consistent temperature and density profiles of irradiated active protoplanetary disks, using a two-dimensional radiative transfer calculation. By means of these profiles we have studied the stabilization of the convective instability by radiative heating and the magnetorotational instability (MRI) via ohmic dissipation, taking into account the effect of dust particle growth. Simple chemistry such as ionization by cosmic rays and recombination on dust grains are used to calculate the ionization degree of gas in the disks. Our results show that the dust growth stabilizes the convective instability due to the 2D effect of radiative transfer, while it enhances the MRI through the decrease in the recombination of ions on the dust grains. In addition, the influences of the dust settling toward the midplane of the disks on the instabilities are discussed.  相似文献   
4.
Marble has a great potential to understand a history of various geological events occurring during tectonic processes. In order to decode metamorphic–metasomatic records on C–O isotope compositions of marble at mid-crustal conditions, we conducted a C–O–Sr isotope study on upper amphibolite-facies marbles and a carbonate–silicate rock from the Hida Belt, which was once a part of the crustal basement of the East Asian continental margin. Carbon and oxygen isotope analyses of calcite from marbles (Kamioka area) and a carbonate–silicate rock (Wadagawa area) show a large variation of δ13C [VPDB] and δ18O [VSMOW] values (from −4.4 to +4.2 ‰ and +1.6 to +20.8 ‰, respectively). The low δ13C values of calcites from the carbonate–silicate rock (from −4.4 to −2.9 ‰) can be explained by decarbonation (CO2 releasing) reactions; carbon–oxygen isotope modeling suggests that a decrease of δ13C strongly depends on the amount of silicate reacting with carbonates. The occurrence of metamorphic clinopyroxene in marbles indicates that all samples have been affected by decarbonation reactions. All δ18O values of calcites are remarkably lower than the marine-carbonate values. The large δ18O variation can be explained by the isotope exchange via interactions between marble, external fluids, and/or silicates. Remarkably low δ18O values of marbles that are lower than mantle value (~+5 ‰) suggest the interaction with meteoric water at a later stage. Sr isotope ratios (87Sr/86Sr = 0.707255–0.708220) might be close to their protolith values. One zircon associated with wollastonite in a marble thin-section yields a U–Pb age of 222 ± 3 Ma, which represents the timing of the recrystallization of marble, triggered by H2O-rich fluid infiltration at a relatively high-temperature condition. Our isotope study implies that the upper amphibolite-facies condition, like the Hida Belt, might be appropriate to cause decarbonation reactions which can modify original isotope compositions of marble if carbonates react with silicates.  相似文献   
5.
Sedimentological, geochemical, and chronological analyses were carried out on 18 carbonate rock samples collected at depths of 938, 1085, and 3354 m on the western slope of Minamitorishima (Marcus Island), which is located near the western margin of the Pacific Plate. Four groups of carbonate rocks were distinguished: a mollusk-rich limestone, a coral-rich dolomite, a foraminiferal-nannofossil packstone, and a phosphatized mudstone/wackestone. The mollusk-rich limestone is characterized by the dominance of bivalves (including rudists) and gastropod shells. Strontium isotope ratios (87Sr/86Sr) and Mesorbitolina ex gr. texana (a large benthic foraminifer) indicate that the shallow-water carbonates were deposited during the late Aptian–early Albian (ca. 123–111 Ma). The coral-rich dolomite is characterized by abundant scleractinian corals and nongeniculate coralline algae associated with encrusting acervulinid foraminifers. The biotic composition is similar to that of the Oligocene–Pleistocene carbonates reported from other seamounts in the northwestern Pacific. Geochemical data show that the coral-rich carbonates were dolomitized at 9.5–6.8 Ma (Tortonian–Messinian) and that normal seawater was the most likely parent fluid. The foraminiferal-nannofossil packstone is a semi-consolidated foraminiferal-nannofossil ooze and was deposited during the Pleistocene (0.99–0.45 Ma). The phosphatized mudstone/wackestone is marked by the absence of macrofossils and the presence of traces of planktic foraminifers. Although its depositional age is not constrained, the Sr isotope ratios indicate that the phosphatization occurred at 33.2–28.9 Ma. After the deposition of the Cretaceous shallow-water carbonates, including the mollusk-rich limestone, Minamitorishima was drowned and its top was covered with a pelagic cap, represented by the mudstone/wackestone. The late Eocene–early Oligocene volcanism (40.2–33.2 Ma) caused episodic uplift and returned the top of Minamitorishima to a shallow-water environment. After the early Oligocene phosphatization of the pelagic cap, coral reefs flourished on the top of this island. The reef limestone was dolomitized during the Tortonian–Messinian.  相似文献   
6.
Stable carbon and oxygen isotope composition of fossilized brachiopod shells serves as an important source to delineate Earth's paleoenvironmental evolution in the Phanerozoic. However, the original isotopic composition is potentially modified by various kinds of diagenesis. To evaluate the extent to which the original isotopic composition of fossilized brachiopod shells is modified by meteoric diagenesis, microstructure, cathodoluminescence (CL) images, and carbon and oxygen isotope composition of fossilized Kikaithyris hanzawai (rhynchonellate brachiopod) shells were examined. The shells were collected from Pleistocene shallow marine carbonates exposed on the Ryukyu Islands, southwestern Japan. The extent of diagenetic alteration is quantitatively evaluated here as both the preservation state of the original shell microstructure and the luminescence/non‐luminescence of shells. Although altered fibers were commonly observed in the brachiopod shells, the original isotopic composition was almost retained. There are no significant differences in the isotopic composition between the luminescent and non‐luminescent shells. There is no direct relationship between the preservation state of the original shell microstructure and the luminescence/non‐luminescence of shells at three of four horizons, indicating that CL images are not necessarily useful for the detection of diagenetic alteration of shells or shell portions. Applying multiple criteria to assessing diagenetic alteration and cross‐checking them are required to distinguish between diagenetically altered and unaltered brachiopod shells.  相似文献   
7.
The Taho Formation in western Shikoku Island, Japan, consists of Triassic carbonates that formed on a seamount in the Panthalassic Ocean. In order to investigate the stratigraphy and paleoceanography of this carbonate succession, we analyzed the biostratigraphy and chemostratigraphy of a 17.6 m-thick section of the upper Taho Formation at the stratotype area in Tahokamigumi, Seiyo City. This section comprises bioclastic limestone containing Triassic bivalves, ammonoids, and conodonts. We recognized six conodont zones (in ascending order): the Novispathodus pingdingshanensis, Novispathodus brevissimus, Triassospathodus symmetricus, Triassospathodus homeri, Chiosella timorensis, and Magnigondolella cf. alexanderi zones. Thus, the studied carbonate succession is latest Smithian to Aegean in age. A δ13C profile of this section shows elevated values during the lowest Spathian followed by a gradual negative excursion, a subsequent positive excursion near the Spathian–Aegean boundary, and relatively constant values during the Aegean. The characteristic series of negative and positive excursions correlates with other δ13C records for this period, including the peak of the upper Smithian–lowest Spathian positive excursion (P3), lower to middle Spathian negative excursion (N4), and middle Spathian–lowest Aegean positive excursion (P4). This represents a new high-resolution Spathian–Aegean δ13C record of the Panthalassic Ocean, for which ages are constrained by conodont biostratigraphy. The Taho δ13C profile exhibits a consistent positive offset of ~2 ‰ as compared with those from other regions (i.e., mostly in the Tethyan Ocean). This can be explained by preferential removal of 12C from seawater during photosynthesis and calcification by marine organisms over the platform, and/or the relatively high δ13C values of dissolved inorganic carbon in the Panthalassic Ocean due to less influence of 12C-enriched terrestrial waters and high marine organic production/burial as compared with the more restricted Tethyan Ocean.  相似文献   
8.
The Torinosu Limestone represents carbonate platform deposits in a foreland basin, the sedimentary setting of which is highly different from those of well‐known Late Jurassic reefs in the western Tethys that developed on shelf areas of continental margins and intra‐Tethyan platforms. Sedimentological and paleontological analyses were conducted on a 55.5 m‐thick Upper Jurassic–Lower Cretaceous (Tithonian–Berriasian) carbonate sequence (Torinosu Limestone) at the Eastern Hitotsubuchi Quarry, Kochi Prefecture, Southwest Japan. The carbonate sequence is composed of two sections that are separated by a subaerial exposure surface. Two and three depositional units have been defined in the lower and upper sections, respectively, based on changes in lithology and the biotic composition of the carbonates; they are numbered from 1 to 5, in ascending order. Calcified demosponges (stromatoporoids and a chaetetid Chaetetopsis crinita) are abundant in three units (2, 3, and 5), in which microencrusters (mostly Lithocodium aggregatum and Bacinella irregularis) and microbialites are also common to abundant. Although most of them are para‐allochthonous, in‐situ branching stromatoporoids are found on and above the subaerial exposure surface (unit 3). Corals are less common, poorly diverse, and primarily represented by the family Microsolenidae. Siliciclastic grains occur in all units, but they are particularly common in units 1 and 4. The co‐occurrence of the LithocodiumBacinella association, which is typical of oligotrophic or moderately mesotrophic shallow‐water environments, with microsolenids, which are indicative of high nutrient levels and/or low‐light intensity due to high turbidity, suggests repeated changes in nutrient levels associated with terrigenous input. Based on lithology, biotic composition, and succession, we infer that sea‐level changes and related terrigenous input controlled the sedimentary environment of the studied carbonate sequence.  相似文献   
9.
In order to investigate biota and sedimentary facies, and to delineate processes of carbonate sedimentation in seagrass beds, we conducted sedimentological investigations along three onshore–offshore transects at two sites (Nagura and Yoshihara) on Ishigaki‐jima, Ryukyu Islands. Along the transects, the seagrass beds extended seaward 20–40 m from shore, and their widths parallel to the shore ranged from 60 to >110 m. The seagrass was dominated by Thalassia hemprichii, Cymodocea rotundata and subordinate C. serrulata. Seasonal changes in seagrass coverage were evident, with mean coverage relatively higher in summer and fall (July and October) than in winter and spring (January and April). The surface sediment throughout the seagrass beds was dominated by medium to very coarse sand‐sized bioclasts displaying grainstone/packstone fabrics. Bioclasts were dominated by corals and coralline algae, with lesser benthic foraminifers, mollusks, echinoids, and Halimeda. The grainstone/packstone was underlain by gravelly sediment with coral clasts, showing a rudstone fabric, at the Nagura Site. The lower part of the core sediment was blackened, indicating a reducing environment. Two dates of corals collected at the Nagura and Yoshihara sites (24.5 cm and 16.5 cm below the sea bottom) were 2781–2306 and 4374–3805 cal BP (2σ age range), respectively, suggesting extremely low sedimentation rates (<0.1 mm/year). Sediment influx was higher during July–January than during January–July. The relatively large influx during summer and fall is caused by massive sediment transport during typhoons and storms. The total sediment influx (i.e., suspension‐load sediment transportation) is 74–96 kg CaCO3/m2/year at the Nagura Site and 21–57 kg CaCO3/m2/year at the Yoshihara Site. Sediment influx was significantly greater in the seagrass beds than in surrounding areas, providing supporting evidence for an sediment trapping function of seagrass beds. Our data indicate that seagrass beds in the Ryukyu Islands are characterized by high sediment fluxes and extremely low sedimentation rates.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号