首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   5篇
  国内免费   2篇
测绘学   1篇
大气科学   18篇
地球物理   42篇
地质学   41篇
海洋学   30篇
天文学   30篇
综合类   1篇
自然地理   23篇
  2021年   6篇
  2020年   4篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   6篇
  2015年   1篇
  2014年   2篇
  2013年   10篇
  2012年   5篇
  2011年   10篇
  2010年   5篇
  2009年   9篇
  2008年   11篇
  2007年   9篇
  2006年   5篇
  2005年   10篇
  2004年   7篇
  2003年   7篇
  2002年   9篇
  2001年   5篇
  2000年   6篇
  1999年   4篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1987年   2篇
  1985年   2篇
  1983年   6篇
  1982年   5篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有186条查询结果,搜索用时 374 毫秒
1.
2.
The Mangshan Plateau is located on the south bank of the Huang He (Yellow River) just west of the city of Zhengzhou, well outside the Loess Plateau in central China. Mixing models of the grain‐size data indicate that the loess deposits are mixtures of three loess components. Comparison of the mixing model with existing models established for a series of loess–palaeosol sequences from the Loess Plateau indicates that the Mangshan loess has been supplied from a proximal dust source, the Huang He floodplain, during major dust outbreaks. The high accumulation rates, the composition of the loess components, and especially the high proportions of a sandy loess component support this. Owing to the exceptionally high accumulation rates, the Mangshan grain size, magnetic susceptibility and carbonate records provide a high‐resolution archive of environmental and climate change. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
3.
We determined concentrations and isotopic composition of nitrate in five German rivers (Rhine, Elbe, Weser, Ems, and Eider) that discharge into the North Sea. Samples were obtained on a biweekly to monthly basis and chemical and isotopic analyses were conducted for the period January 2006 to March 2007 at sampling stations situated before estuarine mixing with North Sea water. We observed maximum nitrate loads in winter and fall, when both discharge and concentration of nitrate are highest. Mean annual isotope values in nitrate ranged from 8.2‰ to 11.3‰ for and 0.4‰ to 2.2‰ for . The ranges of isotope values suggest that nitrate in these rivers derives from soil nitrification, sewage, and/or manure. These and published data on other rivers in northern Europe and northern America reveal a correlation between agricultural land use (>60% in the catchment areas of rivers examined) and values. The rivers Rhine, Elbe, Weser and Ems show similar seasonal patterns of the isotopic fractionation of nitrate with increasing values and simultaneously decreasing concentrations during summer months, indicating that assimilation of nitrate is the main fractionation process of riverine nitrate. Isotopic signals in winter are more depleted than the mean summer isotope values, attributed to less microbial activity and assimilative processes. Load weighted nitrate δ15N of the riverine input to the German Bight Coastal Water mass before estuarine mixing and processing is between 8‰ and 12‰. The high δ15N value of river nitrate is matched by high δ15N of nitrate in surface sediments in the German Bight.  相似文献   
4.
Recent observations suggest that the annual mean southward transport of the East Sakhalin Current (ESC) is significantly larger than the annual mean Sverdrup transport. Motivated by this observational result, transport of a western boundary current has been investigated using a simple numerical model with a western slope. This transport is defined as the instantaneous barotropic transport integrated from the western boundary to the offshore point where the barotropic velocity vanishes. The model, forced by seasonally varying wind stress, exhibits an annual mean of the western boundary current transport that is larger than that of the Sverdrup transport, as observed. The southward transport from October to March in the model nearly equals the instantaneous Sverdrup transport, while the southward transport from April to September decreases slowly. Although the Sverdrup transport in July vanishes, the southward transport in summer nearly maintains the annual mean Sverdrup transport, because the barotropic Rossby wave cannot intrude on the western slope. This summer transport causes the larger annual mean. Although there are some uncertainties in the estimation of the Sverdrup transport in the Sea of Okhotsk, the seasonal variation of the southward transport in the model is qualitatively similar to the observations.  相似文献   
5.
We have examined wind-induced circulation in the Sea of Okhotsk using a barotropic model that contains realistic topography with a resolution of 9.25 km. The monthly wind stress field calculated from daily European Centre for Medium-Range Weather Forecasting (ECMWF) Re-Analysis data is used as the forcing, and the integration is carried out for 20 days until the circulation attains an almost steady state. In the case of November (a representative for the winter season from October to March), southward currents of velocity 0.1–0.3 m s−1 occur along the bottom contours off the east of Sakhalin Island. The currents are mostly confined to the shelf (shallower than 200 m) and extend as far south as the Hokkaido coast. In the July case (a representative for the summer season from April to September), significant currents do not occur, even in the shallow shelves. The simulated southward current over the east Sakhalin shelf appears to correspond to the near-shore branch of the East Sakhalin Current (ESC), which was observed with the surface drifters. These seasonal variations simulated in our experiments are consistent with the observations of the ESC. Dynamically, the simulated ESC is interpreted as the arrested topographic wave (ATW), which is the coastally trapped flow driven by steady alongshore wind stress. The volume transport of the simulated ESC over the shelf reaches about 1.0 Sv (1 Sv = 106 m3s−1) in the winter season, which is determined by the integrated onshore Ekman transport in the direction from which shelf waves propagate. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
6.
Kay L. Booth 《GeoJournal》1993,29(3):299-305
Since the turn of the century, recreation has grown as a motivating force in public land administration. Today, the Department of Conservation manages approximately one third of New Zealand's outdoor recreation resources and has the mandate to foster the use of natural and historic resources for recreation, and to allow their use for tourism (Conservation Act 1987:8). This paper traces the emergence of a recreation perspective within public land administration and examines the development of a recreation philosophy and policy within the Department of Conservation. It suggests future directions for outdoor recreation management in New Zealand.  相似文献   
7.
Petrologic studies of tephra from Kanaga, Adak, and Great Sitkin Islands indicate that amphibole fractionation and magma mixing are important processes controlling the composition of calc-alkaline andesite and dacite magmas in the central Aleutians. Amphibole is ubiquitous in tephra from Kanaga and Adak Islands, whereas it is present only in a basaltic-andesite pumice from Great Sitkin. Dacitic tephra from Great Sitkin do not contain amphibole. Hornblende dacite tephra contain HB+PLAG+OX±OPX±CPX phenocrysts with simple zoning patterns, suggesting that the dacites evolved in isolated magma chambers. Andesitic tephra from Adak contain two pyroxene and hornbelende populations, and reversely zoned plagioclase, indicating a more complex history involving mixing and fractional crystallization. Mass balance calculations suggest that the andesitic tephra may represent the complements of amphibole-bearing cumulate xenoliths, both formed during the evolution of high-Al basalts. The presence of amphibole in andesitic and dacitic tephra implies that Aleutian cale-alkaline magmas evolve in the mid to lower crust under hydrous (>4 wt.% H2O) and oxidizing (Ni–NiO) conditions. Amphibole-bearing andesites and pyroxene-bearing dacites from Great Sitkin indicates fractionation at several levels within the arc crust. Despite its absence in many calc-alkaline andesite and dacite lavas, open system behavior involving amphibole fractionation can explain the trace element characteristies of lavas found on Adak Island. Neither open nor closed system fractionation involving a pyroxene-bearing assemblage is capable of explaining the trace element concentrations or ratios found in the Adak suite. We envision a scenario where amphibole was initially a liquidus phase in many calc-alkaline magmas, but was later replaced by pyroxenes as the magmas rose to shallow levels within the crust. The mineral assemblage in these evolved lavas reflects shallow level equilibration of the magma, whereas the trace element chemistry provides evidence for a earlier, amphibole-bearing, mineral assemblage.  相似文献   
8.
Following recent applications of numerical modelling and remote sensing to the thermal bar phenomenon, this paper seeks to review the current state of knowledge on the effect of its circulation on lacustrine plankton ecosystems. After summarising the literature on thermal bar hydrodynamics, a thorough review is made of all plankton observations taken in the presence of a thermal bar. Two distinct plankton growth regimes are found, one with production favoured throughout the inshore region and another with a maximum in plankton biomass near the position of the thermal bar. Possible explanations for the observed distributions are then discussed, with reference to numerical modelling studies, and the scope for future study of this interdisciplinary topic is outlined.  相似文献   
9.
As the state’s primary means of both redistributing wealth and incentivizing private investment, tax plays an outsized role in a range of critical urban processes, including (re)development, gentrification, financialization, and local and regional governance. We argue, through reference to existing literature in urban and economic geography, as well as our own research on taxation and the state, that urban scholarship could benefit by close and careful engagement with taxation and the tax system. We term this new vein of research “fiscal geographies” and see it as offering potential for more nuanced study of urban political economy, politics, and processes.  相似文献   
10.
A New Progress of the Proterozoic Chronostratigraphical Division   总被引:1,自引:0,他引:1  
The Precambrian, an informal chronostratigraphical unit, represents the period of Earth history from the start of the Cambrian at ca. 541 Ma back to the formation of the planet at 4567 Ma. It was originally conceptualized as a "Cryptozoic Eon" that was contrasted with the Phanerozoic Eon from the Cambrian to the Quaternary, which is now known as the Precambrian and can be subdivided into three eons, i.e., the Hadean, the Archean and the Proterozoic. The Precambrian is currently divided chronometrically into convenient boundaries, including for the establishment of the Proterozoic periods that were chosen to reflect large-scale tectonic or sedimentary features(except for the Ediacaran Period). This chronometric arrangement might represent the second progress on the study of chronostratigraphy of the Precambrian after its separation from the Phanerozoic. Upon further study of the evolutionary history of the Precambrian Earth, applying new geodynamic and geobiological knowledge and information, a revised division of Precambrian time has led to the third conceptual progress on the study of Precambrian chronostratigraphy. In the current scheme, the Proterozoic Eon began at 2500 Ma, which is the approximate time by which most granite-greenstone crust had formed, and can be subdivided into ten periods of typically 200 Ma duration grouped into three eras(except for the Ediacaran Period). Within this current scheme, the Ediacaran Period was ratified in 2004, the first period-level addition to the geologic time scale in more than a century, an important advancement in stratigraphy. There are two main problems in the current scheme of Proterozoic chronostratigraphical division:(1) the definition of the Archean–Proterozoic boundary at 2500 Ma, which does not reflect a unique time of synchronous global change in tectonic style and does not correspond with a major change in lithology;(2) the round number subdivision of the Proterozoic into several periods based on broad orogenic characteristics, which has not met with requests on the concept of modern stratigraphy, except for the Ediacaran Period. In the revised chronostratigraphic scheme for the Proterozoic, the Archean–Proterozoic boundary is placed at the major change from a reducing early Earth to a cooler, more modern Earth characterized by the supercontinent cycle, a major change that occurred at ca. 2420 Ma. Thus, a revised Proterozoic Eon(2420–542 Ma) is envisaged to extend from the Archean–Proterozoic boundary at ca. 2420 Ma to the end of the Ediacaran Period, i.e., a period marked by the progressive rise in atmospheric oxygen, supercontinent cyclicity, and the evolution of more complex(eukaryotic) life. As with the current Proterozoic Eon, a revised Proterozoic Eon based on chronostratigraphy is envisaged to consist of three eras(Paleoproterozoic, Mesoproterozoic, and Neoproterozoic), but the boundary ages for these divisions differ from their current ages and their subdivisions into periods would also differ from current practice. A scheme is proposed for the chronostratigraphic division of the Proterozoic, based principally on geodynamic and geobiological events and their expressions in the stratigraphic record. Importantly, this revision of the Proterozoic time scale will be of significant benefit to the community as a whole and will help to drive new research that will unveil new information about the history of our planet, since the Proterozoic is a significant connecting link between the preceding Precambrian and the following Phanerozoic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号