首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   375篇
  免费   27篇
  国内免费   5篇
测绘学   6篇
大气科学   34篇
地球物理   104篇
地质学   164篇
海洋学   31篇
天文学   37篇
综合类   2篇
自然地理   29篇
  2023年   7篇
  2022年   7篇
  2021年   7篇
  2020年   14篇
  2019年   10篇
  2018年   22篇
  2017年   25篇
  2016年   15篇
  2015年   15篇
  2014年   19篇
  2013年   24篇
  2012年   24篇
  2011年   27篇
  2010年   25篇
  2009年   20篇
  2008年   27篇
  2007年   10篇
  2006年   12篇
  2005年   10篇
  2004年   12篇
  2003年   7篇
  2002年   11篇
  2001年   4篇
  2000年   6篇
  1999年   7篇
  1998年   5篇
  1997年   5篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1980年   2篇
  1969年   1篇
  1963年   1篇
排序方式: 共有407条查询结果,搜索用时 217 毫秒
1.
Subsurface deformation is a driver for river path selection when deformation rates become comparable to the autogenic mobility rate of rivers. Here we combine geomorphology, soil and sediment facies analyses, and geophysical data of the Late Quaternary sediments of the central Garo-Rajmahal Gap in Northwest Bengal to link subsurface deformation with surface processes. We show variable sedimentation characteristics, from slow rates (<0.8 mm/year) in the Tista megafan at the foot of the Himalaya to nondeposition at the exposed surface of the Barind Tract to the south, enabling the development of mature soils. Combined subsidence in the Tista fan and uplift of the Barind Tract are consistent with a N-S flexural response of the Indian plate to loading of the Himalaya Mountains given a low value of elastic thickness (15–25 km). Provenance analysis based on bulk strontium concentration suggests a dispersal of sediment consistent with this flexural deformation—in particular the abandonment of the Barind Tract by a Pleistocene Brahmaputra River and the current extents of the Tista megafan lobes. Overall, these results highlight the control by deeply rooted deformation patterns on the routing of sediment by large rivers in foreland settings.  相似文献   
2.
The oceanographic setting and the planktonic distribution in the coastal transition zone off Concepción (∼35-38°S, ∼73-77°W), an area characterized by its high biological production, were assessed during two different seasons: austral spring with equatorward upwelling favorable winds and austral winter with predominately northerly winds. Oceanographic and biological data (total chlorophyll-a, particulate organic carbon, microplankton, large mesozooplankton >500 μm as potential consumers of microplankton) were obtained during two cruises (October 1998, July 1999) together with satellite imagery for wind stress, geostrophic flow, surface temperature, and chlorophyll-a data. The physical environment during the spring sampling was typical of the upwelling period in this region, with a well-defined density front in the shelf-break area and high concentrations of surface chlorophyll-a (>5 mg m−3) on the shelf over the Itata terrace. During the winter sampling, highly variable though weakly upwelling-favorable winds were observed along with lower surface chlorophyll-a values (<2 mg m−3) on the shelf. In the oceanic area (>100 km from the coast), cyclonic and anti-cyclonic eddies were evident in the flow field during both periods, the former coinciding with higher chlorophyll-a contents (∼1 mg m−3) than in the surrounding waters. Also, a cold, chlorophyll-a rich filament was well defined during the spring sampling, extending from the shelf out to 350-400 km offshore. Along a cross-shelf transect, the micro- and meso-planktonic assemblages displayed higher coastal abundances during the spring cruise but secondary peaks appeared in the oceanic area during the winter cruise, coinciding with the distribution of the eddies. These results suggest that the mesoscale features in this region, in combination with upwelling, play a role in potentially increasing the biological productivity of the coastal transition zone off Concepción.  相似文献   
3.
Turbidites crop out extensively in the Northern Apennine mountains (Italy). The huge amounts of groundwater drained by tunnels, built for the high speed railway connection between Bologna and Florence, demonstrate the aquifer-like behaviour of these units, up to now considered as aquitards. A conceptual model of groundwater flow systems (GFS) in fractured aquifers of turbidites is proposed, taking into account both system natural state and the perturbation induced by tunnel drainage. Analysis of hydrological data (springs, streams and tunnel discharge), collected over 10 years, was integrated with analysis of hydrochemical and isotopic data and a stream-tunnel tracer test. Hydrologic recession analysis of undisturbed conditions is a key tool in studying turbiditic aquifer hydrogeology, permitting the discrimination of GFS, the estimation of recharge relative to the upstream reach portion and the identification of springs most vulnerable to tunnel drainage impacts. The groundwater budgeting analysis provides evidence that the natural aquifer discharge was stream-focused through GFS, developed downslope or connected to main extensional tectonic lineaments intersecting stream beds; now tunnels drain mainly active recharge groundwater and so cause a relevant stream baseflow deplenishment (approximately two-thirds of the natural value), possibly resulting in adverse effects on local ecosystems.  相似文献   
4.
5.
6.
The aquatic macrofauna of the Guadalquivir estuary were sampled (1 mm mesh persiana net) at 5 sampling sites located along the entire (except the tidal freshwater region) estuarine gradient of salinity (outer 50 km). A total of 134 fish and macroinvertebrate species was collected but only 62 were considered common or regularly present in the estuary. Univariate measures of the community structure showed statistically significant differences among sampling sites: species richness, abundance, and biomass decreased in the upstream direction, being positively correlated with the salinity. Temporal differences of these three variables were also statistically significant. While a clear seasonal pattern (minimum densities in winter and maximum in spring-summer) was observed for abundance and biomass, no such pattern existed for the number of species. Mysids was the most dominant group throughout the estuary (96% to 99% of abundance; 49% to 85% of biomass), although fish biomass was also important at the outer estuary (36% to 38%). Multivariate analyses indicated highly significant spatial variation in the macrofaunal communities observed along the salinity gradient. These analyses suggest that the underlying structure was a continuum with more or less overlapping distributions of the species dependent on their ability to tolerate different physicochemical conditions. There were also significant temporal (intermonthly + interannual) variation of the estuarine community; the relative multivariate dispersion indicated that monthly variation was more considerable (relative multivariate dispersion >1) at the outer part of the estuary during the wet year (last 20 km) and was higher in the inner stations during the dry year (32 to 50 km from the river mouth). Since a clear negative exponential relationship was observed between the freshwater input (from a dam located 110 km upstream) and water salinity at all sampling stations, it is concluded that the human freshwater management is probably affecting the studied estuarine communities. While the higher seasonal (long-term) stability of the salinity gradient, due to the human control of the freshwater input, may facilitate the recruitment of marine species juveniles during the meteorologically unstable early-spring, the additional (short-term) salinity fluctuations during the warm period may negatively affect species that complete their lifecycle within the estuary.  相似文献   
7.
The Serra Gelada sea cliffs are carved in Mesozoic carbonate rocks belonging to the External Zones of the eastern Betic Cordillera (Alicante, SE Spain). Several normal faults with vertical slips of more than a hundred metres have played an important role in the origin of this coastline. Some previous studies propose that the present cliff morphology was mainly originated by Quaternary fault activity. However, the integration of geomorphological features, stratigraphical and sedimentological data, together with the results of the tectonic analysis of fractures occurring in Serra Gelada, and a detailed study of seismic reflection profiles carried out in the adjacent continental shelf, indicate that these normal faults were active mainly during the late Miocene. Therefore, the Serra Gelada sea cliffs represent a tectonically controlled long-term landscape. Thus, normal faults have not significantly modified the Serra Gelada relief since then. Furthermore, the northern part of the Serra Gelada cliff may be considered as an inherited pre-Quaternary relict palaeocliff since it has only undergone very little erosive recession.  相似文献   
8.
The dissolution behavior of natural, ordered kutnahorite (Mn1.14Ca0.82Mg0.04Fe0.012(CO3)2) and a disordered, calcian rhodochrosite (Mn1.16Ca0.78Mg0.06(CO3)2) precipitated in the laboratory was investigated in deionized distilled water and artificial seawater in both open and closed systems at 25 °C, one atmosphere total pressure, and various pCO2s. Both solids dissolved congruently in distilled water in an open system and yielded identical long-term equilibration or extrapolated ion activity products, IAPpkt = aCa 2+aMn 2+(aCO 3 2?)2 = 1.7 (±0.12)× 10?21 or pIAPpkt = 20.77 (±0.03). This value is believed to be the thermodynamic solubility product of pseudokutnahorite. In contrast, the steady state ion concentration products, ICPpkt = [Ca2+][Mn2+][CO3 2?]2, measured following the dissolution of both minerals in artificial seawater increase as the CO2 partial pressure decreases and the [Mn2+]:[Ca2+] ratio increases. These observations are interpreted as resulting from the formation of phases of different stoichiometry in response to large variations of the [Mn2+]:[Ca2+] ratio in solution. These data and results of calcite-seawater equilibration experiments in the presence of various dissolved Mn(II) concentrations define the fields of stability of manganoan calcites and calcian rhodochrosites in seawater within Lippmann phase diagrams for the CaCO3–MnCO3–H2O system. Results of this study reveal that the nature (i.e., mineralogy) and composition of manganese-rich carbonate phases that may form under suboxic/anoxic conditions in marine sediments are dictated by the porewater [Mn2+]:[Ca2+] ratio, the abundance of calcite surfaces and reaction kinetics.  相似文献   
9.
Salinity and periodic inundation are both known to have a major role in shaping the ecohydrology of mangroves through their controls on water uptake, photosynthesis, stomatal conductance, gas exchanges, and nutrient availability. Salinity, in particular, can be considered one of the main abiotic regulating factors for halophytes and salt‐tolerant species, due to its influence on water use patterns and growth rate. Ecohydrological literature has rarely focused on the effects of salinity on plant transpiration, based on the fact that the terrestrial plants mostly thrive in low‐saline, unsaturated soils where the role of osmotic potential can be considered negligible. However, the effect of salinity cannot be neglected in the case of tidal species like mangroves, which have to cope with hyperosmotic conditions and waterlogging. We introduce here a first‐order ecohydrological model of the soil/plant‐atmosphere continuum of Avicennia marina—also known as gray mangrove—a highly salt‐tolerant pioneer species able to adapt to hyperarid intertidal zones and characterized by unique morphological and ecophysiological traits. The A. marina's soil‐plant‐atmosphere continuum takes explicitly into account the role of water head, osmotic water potential, and water salinity in governing plant water fluxes. A. marina's transpiration is thus modeled as a function of salinity based on a simple parameterization of salt exclusion mechanisms at the root level and a modified Jarvis' expression accounting for the effects of salinity on stomatal conductance. Consistently with previous studies investigating the physiology of mangroves in response to different environmental drivers, our results highlight the major influence of salinity on mangrove transpiration when contrasted with other potential stressors such as waterlogging and water stress.  相似文献   
10.
We explored the submarine portions of the Enriquillo–Plantain Garden Fault zone (EPGFZ) and the Septentrional–Oriente Fault zone (SOFZ) along the Northern Caribbean plate boundary using high‐resolution multibeam echo‐sounding and shallow seismic reflection. The bathymetric data shed light on poorly documented or previously unknown submarine fault zones running over 200 km between Haiti and Jamaica (EPGFZ) and 300 km between the Dominican Republic and Cuba (SOFZ). The primary plate‐boundary structures are a series of strike‐slip fault segments associated with pressure ridges, restraining bends, step overs and dogleg offsets indicating very active tectonics. Several distinct segments 50–100 km long cut across pre‐existing structures inherited from former tectonic regimes or bypass recent morphologies formed under the current strike‐slip regime. Along the most recent trace of the SOFZ, we measured a strike‐slip offset of 16.5 km, which indicates steady activity for the past ~1.8 Ma if its current GPS‐derived motion of 9.8 ± 2 mm a?1 has remained stable during the entire Quaternary.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号