首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   344篇
  免费   24篇
  国内免费   5篇
测绘学   7篇
大气科学   23篇
地球物理   102篇
地质学   126篇
海洋学   37篇
天文学   48篇
综合类   1篇
自然地理   29篇
  2023年   8篇
  2022年   9篇
  2021年   7篇
  2020年   13篇
  2019年   7篇
  2018年   18篇
  2017年   18篇
  2016年   15篇
  2015年   6篇
  2014年   16篇
  2013年   19篇
  2012年   18篇
  2011年   21篇
  2010年   15篇
  2009年   17篇
  2008年   26篇
  2007年   7篇
  2006年   17篇
  2005年   18篇
  2004年   9篇
  2003年   12篇
  2002年   7篇
  2001年   4篇
  2000年   8篇
  1999年   5篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   5篇
  1990年   3篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1973年   6篇
  1972年   1篇
排序方式: 共有373条查询结果,搜索用时 31 毫秒
1.
Subsurface deformation is a driver for river path selection when deformation rates become comparable to the autogenic mobility rate of rivers. Here we combine geomorphology, soil and sediment facies analyses, and geophysical data of the Late Quaternary sediments of the central Garo-Rajmahal Gap in Northwest Bengal to link subsurface deformation with surface processes. We show variable sedimentation characteristics, from slow rates (<0.8 mm/year) in the Tista megafan at the foot of the Himalaya to nondeposition at the exposed surface of the Barind Tract to the south, enabling the development of mature soils. Combined subsidence in the Tista fan and uplift of the Barind Tract are consistent with a N-S flexural response of the Indian plate to loading of the Himalaya Mountains given a low value of elastic thickness (15–25 km). Provenance analysis based on bulk strontium concentration suggests a dispersal of sediment consistent with this flexural deformation—in particular the abandonment of the Barind Tract by a Pleistocene Brahmaputra River and the current extents of the Tista megafan lobes. Overall, these results highlight the control by deeply rooted deformation patterns on the routing of sediment by large rivers in foreland settings.  相似文献   
2.
3.
The oceanographic setting and the planktonic distribution in the coastal transition zone off Concepción (∼35-38°S, ∼73-77°W), an area characterized by its high biological production, were assessed during two different seasons: austral spring with equatorward upwelling favorable winds and austral winter with predominately northerly winds. Oceanographic and biological data (total chlorophyll-a, particulate organic carbon, microplankton, large mesozooplankton >500 μm as potential consumers of microplankton) were obtained during two cruises (October 1998, July 1999) together with satellite imagery for wind stress, geostrophic flow, surface temperature, and chlorophyll-a data. The physical environment during the spring sampling was typical of the upwelling period in this region, with a well-defined density front in the shelf-break area and high concentrations of surface chlorophyll-a (>5 mg m−3) on the shelf over the Itata terrace. During the winter sampling, highly variable though weakly upwelling-favorable winds were observed along with lower surface chlorophyll-a values (<2 mg m−3) on the shelf. In the oceanic area (>100 km from the coast), cyclonic and anti-cyclonic eddies were evident in the flow field during both periods, the former coinciding with higher chlorophyll-a contents (∼1 mg m−3) than in the surrounding waters. Also, a cold, chlorophyll-a rich filament was well defined during the spring sampling, extending from the shelf out to 350-400 km offshore. Along a cross-shelf transect, the micro- and meso-planktonic assemblages displayed higher coastal abundances during the spring cruise but secondary peaks appeared in the oceanic area during the winter cruise, coinciding with the distribution of the eddies. These results suggest that the mesoscale features in this region, in combination with upwelling, play a role in potentially increasing the biological productivity of the coastal transition zone off Concepción.  相似文献   
4.
Turbidites crop out extensively in the Northern Apennine mountains (Italy). The huge amounts of groundwater drained by tunnels, built for the high speed railway connection between Bologna and Florence, demonstrate the aquifer-like behaviour of these units, up to now considered as aquitards. A conceptual model of groundwater flow systems (GFS) in fractured aquifers of turbidites is proposed, taking into account both system natural state and the perturbation induced by tunnel drainage. Analysis of hydrological data (springs, streams and tunnel discharge), collected over 10 years, was integrated with analysis of hydrochemical and isotopic data and a stream-tunnel tracer test. Hydrologic recession analysis of undisturbed conditions is a key tool in studying turbiditic aquifer hydrogeology, permitting the discrimination of GFS, the estimation of recharge relative to the upstream reach portion and the identification of springs most vulnerable to tunnel drainage impacts. The groundwater budgeting analysis provides evidence that the natural aquifer discharge was stream-focused through GFS, developed downslope or connected to main extensional tectonic lineaments intersecting stream beds; now tunnels drain mainly active recharge groundwater and so cause a relevant stream baseflow deplenishment (approximately two-thirds of the natural value), possibly resulting in adverse effects on local ecosystems.  相似文献   
5.
The percentage calculation of crystalline phases in atmospheric particulate matter samples by means of an adiabatic approach of the matrix-flushing method with preferred preparations that avoids preferential orientations, should never be interpreted as absolute values. On the contrary, it should be seen as an indicator of the significant differences between each and every analyzed sample. Factors such as the application of constants, which are only useful for preparations of polycrystalline samples free of preferential orientation, and/or like the deficient resolution shown by the diffraction diagrams for certain phyllosilicate phases, bring a high degree of uncertainty to these percentage calculations. An alternative method of crystalline and amorphous phase quantification is presented below. Once the majority phases in the samples were identified, appropriate pure phases corresponding to each of them were selected. Then, the corresponding calibration curves were built using corundum (number 676 NIST) as a reference pattern phase. After validating the obtained calibration curves, the constants corresponding to each phase and selected spacing were calculated. The ALJOR method has been used for the quantification of five samples.  相似文献   
6.
This article describes various statistical analyses of plume-length data to evaluate the hypothesis that the presence of ethanol in gasoline may hinder the natural attenuation of hydrocarbon releases. Plume dimensions were determined for gasoline-contaminated sites to evaluate the effect of ethanol on benzene and toluene plume lengths. Data from 217 sites in Iowa (without ethanol; set 1) were compared to data from 29 sites in Kansas that were contaminated by ethanol-amended gasoline (10% ethanol by volume; set 2). The data were log-normally distributed, with mean benzene plume lengths (± standard deviation) of 193 ± 135 feet for set 1 and 263 ± 103 feet for set 2 (36% longer). The median lengths were 156 feet and 263 feet (69% longer), respectively. Mean toluene plume lengths were 185± 131 feet for set 1 and 211 ±99 feet for set 2 (14% longer), and the median lengths were 158 feet and 219 feet (39% longer), respectively. Thus, ethanol-containing BTEX plumes were significantly longer for benzene (p < 0.05), but not for toluene. A Wilcoxon signed rank test showed that toluene plumes were generally shorter than benzene plumes, which suggests that toluene was attenuated to a greater extent than benzene. This trend was more pronounced for set 2 (with ethanol), which may reflect that benzene attenuation is more sensitive to the depletion of electron acceptors caused by ethanol degradation. These results support the hypothesis that the presence of ethanol in gasoline can lead to longer benzene plumes. The importance of this effect, however, is probably site-specific, largely depending on the release scenario and the available electron acceptor pool.  相似文献   
7.
The age and tectonosedimentary environment of the Palaeozoic sediments on the Frontal Cordillera is not well known and earlier studies have been unable to satisfactorily explain the geological history of the basement of the Andes.In the vicinity of the old Castaño Viejo mine crop out various levels of partially metamorphosed microbialite limestones, which alternate with thin marly–lutitic interstrata. These levels contain abundant palynomorph remains, which allow the series to be dated as Silurian–Devonian. These data, together with the presence of warm climate fossils, lend support to the hypothesis of a major allochtony of the Chilenia Terrane (of which the Frontal Cordillera formed part), relative to the Cuyania Terrane (which included the Precordillera), prior to their amalgamation.Upper Carboniferous palynomorphs found during this study occur in association with resedimented palynomorphs and chitinozoa, of possible Devonian age. This demonstrates the equivalence of both fossiliferous series and their location within the upper part of the Upper Carboniferous Agua Negra Fm. The Silurian–Devonian elements, deformed during a phase prior to the Gondwanic orogeny, were eroded and transported to the foreland basin during the Upper Carboniferous.The palynomorph associations found in all samples correspond to the Ancistrospora palynological zone and to the Raistrickia densaConvolutispora muriornata Biozone, which are indicative of Upper Carboniferous times. Characteristic forms such as Ancistrospora verrucosa and C. muriornata, both indicative of an Upper Carboniferous age, were found in samples from the Castaño Viejo area.Earlier interpretations of the Frontal Cordillera attributing the sedimentation to a palaeo-latitude at some distance from Gondwana, were based on the presence of Silurian–Devonian hot water stromatolithic limestones. Our results suggest that Cuyania and Chilenia were not necessarily separated by a great distance before their amalgamation. This in turn means that a large ocean was not necessarily consumed in the process.  相似文献   
8.
Salinity and periodic inundation are both known to have a major role in shaping the ecohydrology of mangroves through their controls on water uptake, photosynthesis, stomatal conductance, gas exchanges, and nutrient availability. Salinity, in particular, can be considered one of the main abiotic regulating factors for halophytes and salt‐tolerant species, due to its influence on water use patterns and growth rate. Ecohydrological literature has rarely focused on the effects of salinity on plant transpiration, based on the fact that the terrestrial plants mostly thrive in low‐saline, unsaturated soils where the role of osmotic potential can be considered negligible. However, the effect of salinity cannot be neglected in the case of tidal species like mangroves, which have to cope with hyperosmotic conditions and waterlogging. We introduce here a first‐order ecohydrological model of the soil/plant‐atmosphere continuum of Avicennia marina—also known as gray mangrove—a highly salt‐tolerant pioneer species able to adapt to hyperarid intertidal zones and characterized by unique morphological and ecophysiological traits. The A. marina's soil‐plant‐atmosphere continuum takes explicitly into account the role of water head, osmotic water potential, and water salinity in governing plant water fluxes. A. marina's transpiration is thus modeled as a function of salinity based on a simple parameterization of salt exclusion mechanisms at the root level and a modified Jarvis' expression accounting for the effects of salinity on stomatal conductance. Consistently with previous studies investigating the physiology of mangroves in response to different environmental drivers, our results highlight the major influence of salinity on mangrove transpiration when contrasted with other potential stressors such as waterlogging and water stress.  相似文献   
9.
We explored the submarine portions of the Enriquillo–Plantain Garden Fault zone (EPGFZ) and the Septentrional–Oriente Fault zone (SOFZ) along the Northern Caribbean plate boundary using high‐resolution multibeam echo‐sounding and shallow seismic reflection. The bathymetric data shed light on poorly documented or previously unknown submarine fault zones running over 200 km between Haiti and Jamaica (EPGFZ) and 300 km between the Dominican Republic and Cuba (SOFZ). The primary plate‐boundary structures are a series of strike‐slip fault segments associated with pressure ridges, restraining bends, step overs and dogleg offsets indicating very active tectonics. Several distinct segments 50–100 km long cut across pre‐existing structures inherited from former tectonic regimes or bypass recent morphologies formed under the current strike‐slip regime. Along the most recent trace of the SOFZ, we measured a strike‐slip offset of 16.5 km, which indicates steady activity for the past ~1.8 Ma if its current GPS‐derived motion of 9.8 ± 2 mm a?1 has remained stable during the entire Quaternary.  相似文献   
10.
The regional influence of the Madden–Julian oscillation (MJO) on South America is described. Maps of probability of weekly-averaged rainfall exceeding the upper tercile were computed for all seasons and related statistically with the phase of the MJO as characterized by the Wheeler–Hendon real-time multivariate MJO (RMM) index and with the OLR MJO Index. The accompanying surface air temperature and circulation anomalies were also calculated. The influence of the MJO on regional scales along with their marked seasonal variations was documented. During December–February when the South American monsoon system is active, chances of enhanced rainfall are observed in southeastern South America (SESA) region mainly during RMM phases 3 and 4, accompanied by cold anomalies in the extratropics, while enhanced rainfall in the South Atlantic Convergence Zone (SACZ) region is observed in phases 8 and 1. The SESA (SACZ) signal is characterized by upper-level convergence (divergence) over tropical South America and a cyclonic (anticyclonic) anomaly near the southern tip of the continent. Impacts during March–May are similar, but attenuated in the extratropics. Conversely, in June–November, reduced rainfall and cold anomalies are observed near the coast of the SACZ region during phases 4 and 5, favored by upper-level convergence over tropical South America and an anticyclonic anomaly over southern South America. In September–November, enhanced rainfall and upper-level divergence are observed in the SACZ region during phases 7 and 8. These signals are generated primarily through the propagation of Rossby wave energy generated in the region of anomalous heating associated with the MJO.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号