首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   3篇
  国内免费   1篇
测绘学   1篇
大气科学   2篇
地球物理   19篇
地质学   25篇
海洋学   7篇
天文学   1篇
综合类   1篇
自然地理   6篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2012年   2篇
  2011年   4篇
  2010年   7篇
  2009年   7篇
  2008年   8篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2000年   1篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1987年   1篇
  1984年   1篇
  1980年   1篇
排序方式: 共有62条查询结果,搜索用时 31 毫秒
1.

A 6.8-magnitude earthquake that occurred on January 24, 2020, has been effective in Turkey’s eastern regions. The earthquake, with recorded peak ground acceleration (PGA) value of 0.292 g, caused the destruction or heavy damage of buildings, especially in the city center of Elaz?? province. The purpose of this paper was to share the results of detailed investigation in the earthquake-stricken area. Additionally, the causes of damages and failures observed in the buildings were compared to those that had occurred in previous earthquakes in Turkey. In this study, the damages observed in especially RC buildings as well as in masonry and rural buildings were summarized, the lessons learned were evaluated, and the results were interpreted with reference to Turkish earthquake codes. In the study, it was particularly emphasized why the building stock underwent such damage even though the buildings were exposed to earthquake acceleration well below the design acceleration values.

  相似文献   
2.
The Upper Quaternary seismic stratigraphy and active faults of the Gulf of İzmit were investigated by means of high-resolution shallow seismic profiling data in the source region of 1999 İzmit earthquake. High-resolution seismic reflection data correlated with borehole data indicate that the stratigraphy of İzmit Bay consists of three distinct depositional sequences formed in response to middle Pleistocene-Holocene sea-level changes. Reflector R, separating the pre-Holocene sequences (1 and 2) from the Holocene sequence (3), represents an erosional unconformity produced by the subaerial fluvial erosion of the continental shelves at the time of the last glacial maximum. Occasional, anomalous reflections (acoustic turbidity) observed within the Holocene sequence are interpreted as gas accumulations. The maximum thickness of the Holocene sediments is found to be about 25 m. The isopach map of Holocene sediment implies that the thickness of the Holocene decreases from the east towards the central and western basins of İzmit Bay. Two distinct fault systems are interpreted in İzmit Bay. The main fault system extending roughly in an E-W direction along the Gulf of İzmit is an active right lateral strike slip fault with a normal component. The secondary faults are normal faults striking in different directions and these are identified as being both active and inactive. In addition, prominent compressive features are identified in the seismic cross-sections of some profiles acquired to the east of Hersek Peninsula where the focal mechanisms of the aftershocks of the 1999 İzmit earthquake also reveal predominantly reverse faulting mechanisms, as identified by a local dense seismic network.  相似文献   
3.
吐尔.   《干旱区地理》1995,18(3):72-78
本文根据全国历来四次人口普查资料,对我国塔吉克族人口形热进行了简要的论述。文中阐述了塔吉克族人口规模的发展、变化以及人口再生产类型,并简述了相关的社会、经济、文化等方面的问题。  相似文献   
4.
Abundant sill-like bodies of serpentinized ultramafic rocks, with associated nickel sulfide deposits, are found on the western side of the Thompson Nickel Belt near the Moak Lake-Setting Lake cataclastic fault zone. The ultramafic rocks range in composition from dunite to orthopyroxenite and feature variable alteration. Chemical variation across the bodies is suggestive of in-situ differentiation controlled mainly by olivine and orthopyroxene. Relative abundances of some elements, incompatible for olivine and orthopyroxene, suggest a parental liquid of komatiitic affinity. Ultramafic and mafic rocks are petrogenetically linked. A high degree of partial melting of mantle material and subsequent low-pressure crystal fractionation are responsible for the spectrum of composition from ultramafic to mafic.Publication 19-84, Ottawa-Carleton Centre for Geoscience Studies  相似文献   
5.
6.
7.
The North Anatolian Fault Zone (NAFZ), which marks the boundary between Anatolia and the Eurasian plate, is one of the world's most seismically active structures. Although the eastern part of NAFZ has high seismic hazard, there is a lack of geodetic information about the present tectonics of this region. Even though many scientists would like to study this area, geographical and logistical problems make performing scientific research difficult. In order to investigate contemporary neotectonic deformation on the eastern NAFZ and in its neighborhood, a relatively dense Global Positioning System (GPS) monitoring network was established in 2003. Geodetic observations were performed in three GPS campaigns in an area of 350 km × 200 km with 12-month intervals. In addition, 14 new GPS stations were measured far from the deforming area. Since this region includes the intersection of the NAFZ and the East Anatolian Fault Zone (EAFZ), deformation is complex and estimating seismic hazard is difficult. One important segment is the Yedisu segment and it has not broken since the 1784 earthquake. After the 1992 Erzincan and 2003 Pulumur earthquakes, the Coulomb stress loading on the Yedisu segment of the NAFZ has increased significantly, emphasizing the need to monitor this region. We computed the horizontal velocity field with respect to Eurasia and strain rates field as well. GPS-derived velocities relative to Eurasia are in the range of 16–24 mm/year, which are consistent with the regional tectonics. The principal strain rates were derived from the velocity field. Results show that strain is accumulating between the NAFZ and EAFZ along small secondary fault branches such as the Ovacik Fault (OF).  相似文献   
8.
9.
10.
Recent developments of the Middle East catalog   总被引:8,自引:2,他引:6  
This article summarizes a recent study in the framework of the Global Earth model (GEM) and the Earthquake Model of the Middle East (EMME) project to establish the new catalog of seismicity for the Middle East, using all historical (pre-1900), early and modern instrumental events up to 2006. According to different seismicity, which depends on geophysical, geological, tectonic, and seismicity data, this region is subdivided to nine subregions, consisting of Alborz–Azerbaijan, Afghanistan–Pakistan, Saudi Arabia, Caucasus, Central Iran, Kopeh–Dagh, Makran, Zagros, and Turkey (Eastern Anatolia; after 30° E). After omitting the duplicate events, aftershocks, and foreshocks by using the Gruenthal method, and uniform all magnitude to Mw scale, 28,244 main events remain for the new catalog of Middle East from 1250 B.C. through 2006. The magnitude of completeness (Mc) was determined as 4.9 for five out of nine subregions, where the least values of Mc were found to be 4.2. The threshold of Mc is around 5.5, 5.0, 4.5, and 4.0, for the time after 1950, 1963, 1975, and 2000, respectively. The average of teleseismic depths in all regions is less than 15 km. Totally, majority of depth for Kopeh–Dagh and Central Iran, Zagros, and Alborz–Azerbaijan, approximately, is 15, 13, and 11 km and for Afghanistan–Pakistan, Caucasus, Makran, Turkey (after 30° E), and Saudi Arabia is about 9 km.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号