首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   3篇
  国内免费   2篇
测绘学   2篇
大气科学   5篇
地球物理   21篇
地质学   27篇
海洋学   15篇
天文学   6篇
综合类   1篇
自然地理   2篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2018年   4篇
  2017年   7篇
  2016年   4篇
  2015年   1篇
  2014年   7篇
  2013年   2篇
  2012年   2篇
  2011年   9篇
  2010年   4篇
  2009年   5篇
  2008年   3篇
  2007年   3篇
  2006年   5篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1989年   1篇
  1984年   2篇
  1983年   1篇
  1970年   2篇
排序方式: 共有79条查询结果,搜索用时 171 毫秒
1.
We investigated the water structure and nutrient distribution in the Suruga Bay from April 2000 to July 2002, especially the Offshore Water, which occupies a large part of the bay. The maximum salinity in the upper 200 m varied between 34.49 and 34.71, indicating a temporal change in the influence of Kuroshio Water on the Offshore Water. Seasonal variation in nutrient concentrations was largest from surface to 50 m. On the other hand, the variance in nutrient concentrations within each season was largest in the subsurface layer of 100–300 m in spring, summer and fall. In the Offshore Water, the change of nutrients was negatively correlated with that of salinity in each season. This suggests that an increasing intrusion of saline water brings about a lower nutrient concentration in the Offshore Water. Likewise, negative correlations were observed between the change of the maximum salinity and chlorophyll a (Δ [chl.a-int])/nutrients integrated in the upper 200 m. Δ[chl.a-int] was significantly correlated with the changes of nitrate and phosphorus, but there were no significant correlations between Δ[chl.a-int] and the change of silicate. These results suggest that the concentrations of chlorophyll a and nutrients in the Offshore Water were decreased due to the increasing intrusion of Kuroshio Water. The Offshore Water is likely to be related to the regulation of primary production by nitrate.  相似文献   
2.
3.
The present work aims at introducing a basic theory, implementing methodology and algorithms for 3‐D modeling, and visualizing a geologic model using the Open Source Free GIS GRASS environment. A 3‐D geologic model is constructed from the boundary surfaces of geologic units and the logical model of geologic structure. The algorithms for construction and visualization of the proposed model are based on the geologic function g . The geologic function g assigns a unique geologic unit to every point in the objective 3‐D space. The boundary surface that divides the objective space into two subspaces is estimated using data from field survey. The logical model showing the hierarchical relationship between these boundary surfaces and geologic units can be automatically generated based on the stratigraphic sequence and knowledge of geologic structures. Based on these algorithms, a 3‐D geologic model can be constructed virtually in the GRASS GIS. Applying this model, various geologic surfaces and section models can be visualized in the GRASS GIS environment. “Nviz” was used for dynamic visualization of geologic cross‐sections and generation of animated image sequences. Further, the described algorithms and methods are applied and an online 3‐D geologic modeling system is developed.  相似文献   
4.
5.
A box model, involving simple heterogeneous reaction processes associated with the production of non-sea-salt sulfate (nss-SO 4 2– ) particles, is used to investigate the oxidation processes of dimethylsulfide (DMS or CH3SCH3) in the marine atmosphere. The model is applied to chemical reactions in the atmospheric surface mixing layer, at intervals of 15 degrees latitude between 60° N and 60° S. Given that the addition reaction of the hydroxyl radical (OH) to the sulfur atom in the DMS molecule is faster at lower temperature than at higher temperature and that it is the predominant pathway for the production of methanesulfonic acid (MSA or CH3SO3H), the results can well explain both the increasing tendency of the molar ratio of MSA to nss-SO 4 2– toward higher latitudes and the uniform distribution with latitude of sulfur dioxide (SO2). The predicted production rate of MSA increases with increasing latitude due to the elevated rate constant of the addition reaction at lower temperature. Since latitudinal distributions of OH concentration and DMS reaction rate with OH are opposite, a uniform production rate of SO2 is realized over the globe. The primary sink of DMS in unpolluted air is caused by the reaction with OH. Reaction of DMS with the nitrate radical (NO3) also reduces DMS concentration but it is less important compared with that of OH. Concentrations of SO2, MSA, and nss-SO 4 2– are almost independent of NO x concentration and radiation field. If dimethylsulfoxide (DMSO or CH3S(O)CH3) is produced by the addition reaction and further converted to sulfuric acid (H2SO4) in an aqueous solution of cloud droplets, the oxidation process of DMSO might be important for the production of aerosol particles containing nss-SO 4 2– at high latitudes.  相似文献   
6.
A photochemical box model is used to simulate seasonal variations in concentrations of sulfur compounds at latitude 40° S. It is assumed that the hydroxyl radical (OH) addition reaction to sulfur in the dimethyl sulfide (DMS) molecule is the predominant pathway for methanesulfonic acid (MSA) production, and that the rate constant increases as the air temperature decreases. Concentration of the nitrate radical (NO3) is a function of the DMS flux, because the reaction of DMS with NO3 is the most important loss mechanism of NO3. While the diurnally averaged concentration of OH in winter is a factor of about 8 smaller than in summer, due to the weak photolysis process, the diurnally averaged concentration of NO3 in winter is a factor of about 4–5 larger than in summer, due to the decrease of DMS flux. Therefore, at middle and high latitudes in winter, atmospheric DMS is mainly oxidized by the reaction with NO3. The calculated ratio of the MSA to SO2 production rates is smaller in winter than in summer, and the MSA to non-sea-salt sulfate (nssSO4 2-) molar ratio varies seasonally. This result agrees with data on the seasonal variation of the MSA/nssSO4 2- molar ratio obtained at middle and high latitudes. The calculations indicate that during winter the reaction of DMS with NO3 is likely to be a more important sink of NOx (NO+NO2) than the reaction of NO2 with OH, and to serve as a significant pathway of the HNO3 production. If dimethyl sulfoxide (DMSO) is produced through the OH addition reaction and is heterogeneously oxidized in aqueous solutions, half of the nssSO4 2- produced in summer may be through the oxidation process of DMSO. It is necessary to further investigate the oxidation products by the reaction of DMS with OH, and the possibility of the reaction of DMS with NO3 during winter.  相似文献   
7.
We investigate the outflow propagation in the collapsar in the context of gamma-ray bursts (GRBs) with 2D relativistic hydrodynamic simulations. We vary the specific internal energy and bulk Lorentz factor of the injected outflow from non-relativistic regime to relativistic one, fixing the power of the outflow to be 1051erg s−1. We observed the collimated outflow, when the Lorentz factor of the injected outflow is roughly greater than 2. To the contrary, when the velocity of the injected outflow is slower, the expanding outflow is observed. The transition from collimated jet to expanding outflow continuously occurs by decreasing the injected velocity. Different features of the dynamics of the outflows would cause the difference between the GRBs and similar phenomena, such as, X-ray flashes.  相似文献   
8.
Endo  Takahiro  Iizuka  Tomoki  Koga  Hitomi  Hamada  Nahoko 《Hydrogeology Journal》2023,31(5):1147-1163

Concern has grown regarding how public and private sectors should make effective use of local groundwater to alleviate negative impacts of water-supply cutoff following an earthquake event, which can be regarded as an emergency groundwater governance problem. Existing literature on groundwater governance, however, is based on the tacit assumption of groundwater utilization under normal social conditions, and scant consideration has been given to the role of groundwater following occurrence of a natural disaster. This study conducted questionnaire surveys to reveal how groundwater was used in three cities (Kumamoto, Sapporo, and Sendai) in Japan struck by large earthquakes between 2010 and 2020. Results revealed substantial differences between these cities in terms of groundwater utilization following earthquake occurrence. The time between the restoration of the electricity supply and restoration of the waterworks, and the social capital accumulated by local governments, are indicated as possible reasons for such differences. Analysis also identified policy challenges for improved groundwater governance in an emergency: (1) establishment of a strategy for emergency water supply through combined use of groundwater and other water sources, (2) enhancement of methods for timely inspection of groundwater quality following occurrence of a disaster, (3) maintenance of records of the number of registered disaster emergency wells (DEWs), (4) creation of methods for publicizing locational information on DEWs with adequate regard for the privacy of well owners, and (5) recognition of the importance of making DEWs part of overall disaster preparedness.

  相似文献   
9.
We investigated the structure of uranyl sorption complexes on gibbsite (pH 5.6-9.7) by two independent methods, density functional theory (DFT) calculations and extended X-ray absorption fine structure (EXAFS) spectroscopy at the U-LIII edge. To model the gibbsite surface with DFT, we tested two Al (hydr)oxide clusters, a dimer and a hexamer. Based on polarization, structure, and relaxation energies during geometry optimization, the hexamer cluster was found to be the more appropriate model. An additional advantage of the hexamer model is that it represents both edges and basal faces of gibbsite. The DFT calculations of (monomeric) uranyl sorption complexes show an energetic preference for the corner-sharing versus the edge-sharing configuration on gibbsite edges. The energy difference is so small, however, that possibly both surface species may coexist. In contrast to the edge sites, sorption to basal sites was energetically not favorable. EXAFS spectroscopy revealed in all investigated samples the same interatomic distances of the uranyl coordination environment (RU-Oax ≈ 1.80 Å, RU-Oeq ≈ 2.40 Å), and towards the gibbsite surface (RU-O ≈ 2.87 Å, RU-Al ≈ 3.38 Å). In addition, two U-U distances were observed, 3.92 Å at pH 9.7 and 4.30 Å at pH 5.6, both with coordination numbers of ∼1. The short U-U distance is close to that of the aqueous uranyl hydroxo dimer, UO2(OH)2, reported as 3.875 Å in the literature, but significantly longer than that of aqueous trimers (3.81-3.82 Å), suggesting sorption of uranyl dimers at alkaline pH. The longer U-U distance (4.30 Å) at acidic pH, however, is not in line with known aqueous uranyl polymer complexes. Based on the EXAFS findings we further refined dimeric surface complexes with DFT. We propose two structural models: in the acidic region, the observed long U-U distance can be explained with a distortion of the uranyl dimer to form both a corner-sharing and an edge-sharing linkage to neighboring Al octahedra, leading to RU-U = 4.150 Å. In the alkaline region, a corner-sharing uranyl dimer complex is the most favorable. The U-O path at ∼2.87 Å in the EXAFS spectra arises from the oxygen atom linking two Al cations in corner-sharing arrangement. The adsorption structures obtained by DFT calculations are in good agreement with the structural parameters from EXAFS analysis: U-Al (3.394 Å), U-U (3.949 Å), and U-O (2.823 Å) for the alkaline pH model, and U-Al (3.279 Å), U-U (4.150 Å), and U-O (2.743 Å) for the acidic pH model. This work shows that by combining EXAFS and DFT, consistent structural models for uranyl sorption complexes can be obtained, which are relevant to predict the migration behavior of uranium at nuclear facilities.  相似文献   
10.

The temperature distribution at depth is a key variable when assessing the potential of a supercritical geothermal resource as well as a conventional geothermal resource. Data-driven estimation by a machine-learning approach is a promising way to estimate temperature distributions at depth in geothermal fields. In this study, we developed two methodologies—one based on Bayesian estimation and the other on neural networks—to estimate temperature distributions in geothermal fields. These methodologies can be used to supplement existing temperature logs, by estimating temperature distributions in unexplored regions of the subsurface, based on electrical resistivity data, observed geological/mineralogical boundaries, and microseismic observations. We evaluated the accuracy and characteristics of these methodologies using a numerical model of the Kakkonda geothermal field, Japan, where a temperature above 500 °C was observed below a depth of about 3.7 km. When using geological and geophysical knowledge as prior information for the machine learning methods, the results demonstrate that the approaches can provide subsurface temperature estimates that are consistent with the temperature distribution given by the numerical model. Using a numerical model as a benchmark helps to understand the characteristics of the machine learning approaches and may help to identify ways of improving these methods.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号