首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
测绘学   2篇
地球物理   7篇
地质学   9篇
海洋学   4篇
天文学   2篇
自然地理   11篇
  2019年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   5篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  1998年   1篇
  1992年   1篇
  1986年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1968年   1篇
  1962年   1篇
排序方式: 共有35条查询结果,搜索用时 156 毫秒
1.
Optimal deflection of NEOs en route of collision with the Earth   总被引:1,自引:0,他引:1  
Ralph Kahle  Gerhard Hahn 《Icarus》2006,182(2):482-488
Recently, a method for the n-body analysis of the velocity change required to deflect a hazardous near-Earth object (NEO) was presented by Carusi et al. [Carusi, A., Valsecchi, G.B., D'Abramo, G., Boattini A., 2002. Icarus 159, 417-422]. We extent this method in order to optimize the velocity change vector instead of its along-track magnitude. From an application of both methods to a fictitious NEO we find Carusi's parallel approach to be reasonable for phases of unperturbed two-body motion. But, for orbit phases inhering third-body perturbations, i.e., for planetary close approaches or prior to a collision, the results obtained from the new method show the radial component of deflection impulse to play a major role. We show that a fivefold greater efficiency can be achieved by a deflection impulse being non-parallel to orbital velocity. The new method is applied to two possible 99942 Apophis impact trajectories in order to provide constraints for future Apophis deflection mission analysis.  相似文献   
2.
The Hellenic plate boundary region, located in the collision zone between the Nubian/Arabian and Eurasian lithospheric plates, is one of the seismo-tectonically most active areas of Europe. During the last 15 years, GPS measurements have been used to determine the crustal motion in the area of Greece with the aim to better understand the geodynamical processes of this region. An extended reoccupation network covering whole Greece has been measured periodically in numerous GPS campaigns since the late eighties, and a continuous GPS network has been operated in the region of the Ionian Sea since 1995. In this paper, we present a new detailed high-quality solution of continuous and campaign-type measurements acquired between 1993 and 2003. During the GPS processing, a special effort was made to obtain consistent results with highest possible accuracies and reliabilities. Data of 54 mainly European IGS and EUREF sites were included in the GPS processing in order to obtain results which are internally consistent with the European kinematic field and order to allow for a regional interpretation. After an overview of the results of the IGS/EUREF sites, the results from more than 80 stations in Greece are presented in terms of velocities, time series, trajectories and strain rates. Previous geodetic, geological and seismological findings are generally confirmed and substantially refined. New important results include the observation of deformation zones to the north and to the south of the North Aegean Trough and in the West Hellenic arc region, arc-parallel extension of about 19 mm/yr along the Hellenic arc, and compression between the Ionian islands and the Greek mainland. Due to continuous long-term observations of 4–8 years, it was possible to extract height changes from the GPS time series. In Greece, we observe a differential subsidence of the order of 2 mm/yr between the northern and central Ionian islands across the Kefalonia fault zone. The differential subsidence of the central Ionian islands with respect to the northwestern Greek mainland amounts to 4 mm/yr.  相似文献   
3.
Bioaccumulation of Cd, Co, Cu, Ni, Pb and Zn in Antarctic gammaridean amphipod collectives, Orchomene plebs (Hurley, 1965), was investigated during a cruise of RV "Polarstern" to the Wedell Sea. With the sole exception of Cd the organisms accumulated metals during exposure and depurated them in uncontaminated seawater. Four independent toxicokinetic experiments and one field study were modelled simultaneously to calculate the following size-dependent bioconcentration factors for organisms with body length 10 mm (BCF(10 mm)): 130 (Co), 4030 (Cu), 190 (Ni), 2900 (Pb), and 5210 (Zn). On the time scale of our experiments the data suggest an increased metal uptake by previously exposed test organisms. The collectives investigated may be regarded as potentially suitable biomonitors for Co, Cu, Ni, Pb and Zn but not for Cd. An approach to evaluate the sensitivity of Orchomene plebs as a biomonitor of waterborne metals in the field indicates minimal increments of the ambient exposure concentrations of 0.01 microg Co l(-1), 0.2 microg Cu l(-1), 0.4 microg Ni l(-1), 0.6 microg Pb l(-1) and 0.3 microg Zn l(-1).  相似文献   
4.
Seismic potential of Southern Italy   总被引:1,自引:2,他引:1  
To improve estimates of the long-term average seismic potential of the slowly straining South Central Mediterranean plate boundary zone, we integrate constraints on tectonic style and deformation rates from geodetic and geologic data with the traditional constraints from seismicity catalogs. We express seismic potential (long-term average earthquake recurrence rates as a function of magnitude) in the form of truncated Gutenberg–Richter distributions for seven seismotectonic source zones. Seismic coupling seems to be large or even complete in most zones. An exception is the southern Tyrrhenian thrust zone, where most of the African–European convergence is accommodated. Here aseismic deformation is estimated to range from at least 25% along the western part to almost 100% aseismic slip around the Aeolian Islands. Even so, seismic potential of this zone has previously been significantly underestimated, due to the low levels of recorded past seismicity. By contrast, the series of 19 M6–7 earthquakes that hit Calabria in the 18th and 19th century released tectonic strain rates accumulated over time spans up to several times the catalog duration, and seismic potential is revised downward. The southern Tyrrhenian thrust zone and the extensional Calabrian faults, as well as the northeastern Sicilian transtensional zone between them (which includes the Messina Straits, where a destructive M7 event occurred in 1908), all have a similar seismic potential with minimum recurrence times of M ≥ 6.5 of 150–220 years. This potential is lower than that of the Southern Apennines (M ≥ 6.5 recurring every 60 to 140 years), but higher than that of southeastern Sicily (minimum M ≥ 6.5 recurrence times of 400 years). The high seismicity levels recorded in southeastern Sicily indicate some clustering and are most compatible with a tectonic scenario where the Ionian deforms internally, and motions at the Calabrian Trench are small. The estimated seismic potential for the Calabrian Trench and Central and Western Sicily are the lowest (minimum M ≥ 6.5 recurrence times of 550–800 years). Most zones are probably capable of generating earthquakes up to magnitudes 7–7.5, with the exception of Central and Western Sicily where maximum events sizes most likely do not exceed 7.  相似文献   
5.
Multispectral thermal infrared radiance measurements of the Kupaianaha flow field were acquired with the NASA airborne Thermal Infrared Multispectral Scanner (TIMS) on the morning of 1 October 1988. The TIMS data were used to map both the temperature and emissivity of the surface of the flow field. The temperature map depicted the underground storage and transport of lava. The presence of molten lava in a tube or tumulus resulted in surface temperatures that were at least 10° C above ambient. The temperature map also clearly defined the boundaries of hydrothermal plumes which resulted from the entry of lava into the ocean. The emissivity map revealed the boundaries between individual flow units within the Kupaianaha field. In general, the emissivity of the flows varied systematically with age but the relationship between age and emissivity was not unique. Distinct spectral anomalies, indicative of silica-rich surface materials, were mapped near fumaroles and ocean entry sites. This apparent enrichment in silica may have resulted from an acid-induced leaching of cations from the surfaces of glassy flows. Such incipient alteration may have been the cause for virtually all of the emissivity variations observed on the flow field, the spectral anomalies representing areas where the acid attack was most intense.  相似文献   
6.
Summary. A new set of 1×1° mean free-air anomalies in the Indian Ocean is determined on the basis of previously published free-air anomaly maps (Talwani & Kahle) and the most recent Lamont surface ship gravity measurements. The data are then used to compute a (total) 1×1° gravimetric Indian Ocean geoid. The computation is carried out by combining the Goddard Space Flight Center (GSFC) GEM-6 geoid and a difference geoid that corresponds to the differences between the set of 1×1° surface gravity values and the GEM-6 gravity anomalies. The difference geoid is highest over the Madagascar Ridge (+ 20 m) and lowest over the Timor Trough (-30 m). The total geoid is compared with GEOS-3 radar altimeter derived geoid profiles and geophysical implications are discussed.  相似文献   
7.
8.
9.
Detailed geologic mapping of the San Andreas fault zone in Los Angeles County since 1972 has revealed evidence for diverse histories of displacement on branch and secondary faults near Palmdale. The main trace of the San Andreas fault is well defined by a variety of physiographic features. The geologic record supports the concept of many kilometers of lateral displacement on the main trace and on some secondary faults, especially when dealing with pre-Quaternary rocks. However, the distribution of upper Pleistocene rocks along branch and secondary faults suggests a strong vertical component of displacement and, in many locations, Holocene displacement appears to be primarily vertical. The most recent movement on many secondary and some branch faults has been either high-angle (reverse and normal) or thrust. This is in contrast to the abundant evidence for lateral movement seen along the main San Andreas fault. We suggest that this change in the sense of displacement is more common than has been previously recognized.The branch and secondary faults described here have geomorphic features along them that are as fresh as similar features visible along the most recent trace of the San Andreas fault. From this we infer that surface rupture occurred on these faults in 1857, as it did on the main San Andreas fault. Branch faults commonly form “Riedel” and “thrust” shear configurations adjacent to the main San Andreas fault and affect a zone less than a few hundred meters wide. Holocene and upper Pleistocene deposits have been repeatedly offset along faults that also separate contrasting older rocks. Secondary faults are located up to 1500 m on either side of the San Andreas fault and trend subparallel to it. Moreover, our mapping indicates that some portions of these secondary faults appear to have been “inactive” throughout much of Quaternary time, even though Holocene and upper Pleistocene deposits have been repeatedly offset along other parts of these same faults. For example, near 37th Street E. and Barrel Springs Road, a limited stretch of the Nadeau fault has a very fresh normal scarp, in one place as much as 3 m high, which breaks upper Pleistocene or Holocene deposits. This scarp has two bevelled surfaces, the upper surface sloping significantly less than the lower, suggesting at least two periods of recent movement. Other exposures along this fault show undisturbed Quaternary deposits overlying the fault. The Cemetery and Little Rock faults also exhibit selected reactivation of isolated segments separated by “inactive” stretches.Activity on branch and secondary faults, as outlined above, is presumed to be the result of sympathetic movement on limited segments of older faults in response to major movement on the San Andreas fault. The recognition that Holocene activity is possible on faults where much of the evidence suggests prolonged inactivity emphasizes the need for regional, as well as detailed site studies to evaluate adequately the hazard of any fault trace in a major fault zone. Similar problems may be encountered when geodetic or other studies, Which depend on stable sites, are conducted in the vicinity of major faults.  相似文献   
10.
In order to study the ongoing tectonic deformation in the Rhine Graben area, we reconstruct the local crustal velocity and the strain rate field from GPS array solutions. Following the aim of this work, we compile the velocities of permanent GPS stations belonging to various networks (EUREF, AGNES, REGAL and RGP) in central western Europe. Moreover, the strain rate field is displayed in terms of principal axes and values, while the normal and the shear components of the strain tensor are calculated perpendicular and parallel to the strike of major faults. The results are compared with the fault plane solutions of earthquakes, which have occurred in this area. A broad-scale kinematic deformation model across the Rhine Graben is provided on the basis of tectonics and velocity results of the GPS permanent stations. The area of study is divided into four rigid blocks, between which there might be relative motions. The velocity and the strain rate fields are reconstructed along their borders, by estimating a uniform rotation for each block. The tectonic behaviour is well represented by the four-block model in the Rhine Graben area, while a more detailed model will be needed for a better reconstruction of the strain field in the Alpine region.
Magdala TesauroEmail:
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号