首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  国内免费   3篇
测绘学   1篇
大气科学   3篇
地质学   7篇
海洋学   4篇
天文学   1篇
自然地理   1篇
  2016年   1篇
  2013年   4篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2006年   2篇
  2004年   1篇
  2002年   1篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1976年   1篇
排序方式: 共有17条查询结果,搜索用时 515 毫秒
1.
Contents of 13C in kerogens and carbonates in 21 samples from a core of the MAX borehole, Mulhouse Evaporite Basin, range from -27.3 to -23.5 and -3.7 to -1.8% vs PDB, respectively. Organic nitrogen in the same samples is enriched in 15N relative to atmospheric N2 by 12.2-15.7%. Hydrogen indices and delta values for kerogens vary systematically with facies, averaging 493 mg HC/g Corg and -25.7% in the most saline facies (dominated by inputs from aquatic sources) and 267 mg HC/g Corg and -23.7% in the least saline facies (50/50 aquatic/terrigenous). Values of delta were measured for individual aliphatic hydrocarbons from three samples representing three different organic facies. For all samples, terrigenous inputs were unusually rich in 13C, the estimated delta value for bulk terrigenous debris, apparently derived partly from CAM plants, being -22.5%. In the most saline facies, isotopic evidence indicates the mixing of 13C-depleted products of photosynthetic bacteria with 13C-enriched products of halotolerant eukaryotic algae. At lower salinities, a change in the producer community is marked by a decrease in the 13C content of algal lipids. The content of 13C in algal lipids increases in the least saline facies, due either to succession of different organisms or to decreased concentrations of dissolved CO2.  相似文献   
2.
3.
系统研究了西藏雅鲁藏布江蛇绿岩带中部日喀则地区德村、吉丁和昂仁蛇绿岩中基性岩石的元素与 Sr-Nd-Pb 同位素地球化学特征。这些基性岩石,包括玄武岩、辉长岩和辉绿岩,属于低钾拉斑玄武岩系列,球粒陨石标准化稀土元素分配模式为轻稀土元素亏损的 N-MORB 型,(La/Yh)_N=0.31~0.65(除样品 DC993为1.17)。在原始地幔标准化微量元素图上,亏损高度不相容元素,与 N-MORB 配分模式一致。相对于 Th,无 Nb、Ta的亏损,显示样品不是产于 SSZ 环境。经构造环境图解判别,样品落入了 N-MORB 区域内;这些元素成分特征表明样品具有洋中脊环境或成熟的弧后盆地环境属性。Sr、Nd 和 Pb同位素组成特征表明特提斯地幔源区以 DM(亏损地幔)为主,同时存在少量 EMⅡ(富集地幔类型Ⅱ)、Sr,Nd 和 Pb 同位素组成特征还表明特提斯地幔域具有印度洋 MORB 型的 Sr-Nd-Pb 同位素组成特征。本文的结果进一步支持 Zhang et al.(2005)的研究结果,现今印度洋不仅在地理位置上占据了曾经是特提斯洋的大部分,而且它的地幔域还继承了曾经特提斯的地幔域的地球化学特征。  相似文献   
4.
内蒙古中部发育的三条蛇绿岩带是华北板块和西伯利亚板块之间的缝合带。本文系统研究了其中的温都尔庙和巴彦敖包-交其尔两个蛇绿岩带中变质玄武岩的元素和 Sr、Nd、Pb 同位素地球化学。苏右旗温都尔庙碱性玄武岩为轻稀土富集型;岩石具有板内和大陆裂谷区玄武岩的特征,可能代表了600Ma 左右,温都尔庙地区开始发育的新洋盆。采自苏左旗的巴彦敖包-交其尔玄武岩分为两类,一类呈现轻稀土富集型,呈洋岛玄武岩特征;另一类具有明显的 Nb、Ta 负异常,显示大洋岛弧玄武岩特征,洋岛玄武岩的存在表明古亚洲洋曾经发育洋盆,大洋岛弧玄武岩的存在表明古亚洲洋内部有大洋岩石圈之间的俯冲。将本文的古亚洲洋洋岛玄武岩与中国西南地区的特提斯洋岛玄武岩进行系统的元素和同位素地球化学特征对比表明,古亚洲洋的洋岛玄武岩显示高 U/Pb(HU)和北大西洋和太平洋省的特征,而特提斯洋岛玄武岩属于印度洋省。这些说明古亚洲洋地幔域与特提斯地幔域是两个独立的构造域,它们代表了长期演化的两个不同的地幔地球化学域。  相似文献   
5.
A re-evaluation of the threat status of New Zealand's marine invertebrates was undertaken in 2009, following earlier review of New Zealand's Threat Classification System and subsequent refinement of the national criteria for classifying threat of extinction to New Zealand's flora and fauna. Sufficient information was available to enable 295 marine invertebrate taxa to be fully evaluated and assigned to a national threat category. The 10 taxa at most risk of extinction (‘nationally critical’) were the giant seep clam Calyptogena sp., the primitive acorn barnacle Chionelasmus crosnieri, O'Shea's vent barnacle Volcanolepas osheai, the stalked barnacle Ibla idiotica, the four-blotched umbrella octopus Cirroctopus hochbergi, the roughy umbrella octopus Opisthoteuthis chathamensis, the giant squid Idioteuthis cordiformis, the large-egged polychaete Boccardiella magniovata and two gravel maggots, Smeagol climoi and Smeagol manneringi. The key threatening processes identified for marine invertebrates were fishing and land-use associated impacts such as sedimentation. We identified no taxa that had improved in threat status as a result of past or ongoing conservation management action, nor any taxa that had worsened in threat status because of known changes in their distribution, abundance or rate of population decline. We evaluated a small fraction of New Zealand's marine invertebrate fauna for their threat status. Many taxa remain ‘data deficient’ or unlisted. In addition to the most threatened taxa, we recommend these taxa and their habitats as priorities for further survey and monitoring.  相似文献   
6.
As an example of the technique of fingerprint detection of greenhouse climate change, a multivariate signal or fingerprint of the enhanced greenhouse effect is defined using the zonal mean atmospheric temperature change as a function of height and latitude between equilibrium climate model simulations with control and doubled CO2 concentrations. This signal is compared with observed atmospheric temperature variations over the period 1963 to 1988 from radiosonde-based global analyses. There is a significant increase of this greenhouse signal in the observational data over this period.These results must be treated with caution. Upper air data are available for a short period only, possibly too short to be able to resolve any real greenhouse climate change. The greenhouse fingerprint used in this study may not be unique to the enhanced greenhouse effect and may be due to other forcing mechanisms. However, it is shown that the patterns of atmospheric temperature change associated with uniform global increases of sea surface temperature, with El NinoSouthern Oscillation events and with decreases of stratospheric ozone concentrations individually are different from the greenhouse fingerprint used here.  相似文献   
7.
Salinities occupied by different life stages of bay anchovy (Anchoa mitchilli) were compared over annual cycles at 128 stations in 12 Florida estuaries. The comparison included eight stations in an oligotrophic, groundwater-based estuary in which all life stages were rare or absent. At other stations, adults, eggs, and early larvae occurred in intermediate to high salinities (10-30 psu) with no apparent central salinity tendency. The larva-juvenile transition was marked by an upstream shift to lower salinities (0-15 psu), also with no central salinity tendency. Mean salinities of the juvenile catch were strongly dependent on the salinities of the sampling effort. This dependence was strongest in estuaries that had weak horizontal salinity gradients. Weak salinity gradients were either natural or resulted from estuarine dams. After using nonlinear regression to account for the interaction between effort salinity and catch salinity, catch salinities were found to be similar from year to year within estuaries, but widely different among estuaries, with interestuarine differences ranging as high as 10–13 psu. Lower salinities were occupied by juveniles in estuaries that had long freshwater turnover times. Inherent geomorphic and inflow-related effects on the distribution of prey resources, coupled with an ontogenetic diet shift, are proposed as the explanation for both the habitat shift and the strong interestuarine variability in salinity at capture.  相似文献   
8.

Background

Quantification of ecosystem services, such as carbon (C) storage, can demonstrate the benefits of managing for both production and habitat conservation in agricultural landscapes. In this study, we evaluated C stocks and woody plant diversity across vineyard blocks and adjoining woodland ecosystems (wildlands) for an organic vineyard in northern California. Carbon was measured in soil from 44 one m deep pits, and in aboveground woody biomass from 93 vegetation plots. These data were combined with physical landscape variables to model C stocks using a geographic information system and multivariate linear regression.

Results

Field data showed wildlands to be heterogeneous in both C stocks and woody tree diversity, reflecting the mosaic of several different vegetation types, and storing on average 36.8 Mg C/ha in aboveground woody biomass and 89.3 Mg C/ha in soil. Not surprisingly, vineyard blocks showed less variation in above- and belowground C, with an average of 3.0 and 84.1 Mg C/ha, respectively.

Conclusions

This research demonstrates that vineyards managed with practices that conserve some fraction of adjoining wildlands yield benefits for increasing overall C stocks and species and habitat diversity in integrated agricultural landscapes. For such complex landscapes, high resolution spatial modeling is challenging and requires accurate characterization of the landscape by vegetation type, physical structure, sufficient sampling, and allometric equations that relate tree species to each landscape. Geographic information systems and remote sensing techniques are useful for integrating the above variables into an analysis platform to estimate C stocks in these working landscapes, thereby helping land managers qualify for greenhouse gas mitigation credits. Carbon policy in California, however, shows a lack of focus on C stocks compared to emissions, and on agriculture compared to other sectors. Correcting these policy shortcomings could create incentives for ecosystem service provision, including C storage, as well as encourage better farm stewardship and habitat conservation.
  相似文献   
9.
10.
Length–weight relationships are a fundamental tool for assessing populations and communities in fisheries science. Many researchers have collected length–weight data throughout New Zealand, yet parameters describing these relationships remain unpublished for many species of freshwater fish. We compiled 285,124 fish records from researchers and institutions across New Zealand to parameterise length–weight equations, using both power and quadratic models, for 53 freshwater species belonging to 13 families. The influence of location and sex on length–weight relationships was also assessed. Location, in particular, generated different length–weight relationships for 65% of the species examined. Length–weight equations were validated by comparing predicted weights against independently measured weights from 25 electrofished sites across New Zealand and the equations were highly accurate (R2>0.99). Recommendations are made about how to robustly apply this new resource which should assist freshwater fisheries researchers throughout New Zealand.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号