首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   5篇
测绘学   1篇
大气科学   10篇
地球物理   27篇
地质学   35篇
海洋学   89篇
天文学   6篇
综合类   1篇
自然地理   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   5篇
  2015年   8篇
  2014年   4篇
  2013年   4篇
  2012年   4篇
  2011年   5篇
  2010年   7篇
  2009年   15篇
  2008年   5篇
  2007年   11篇
  2006年   9篇
  2005年   7篇
  2004年   7篇
  2003年   5篇
  2002年   7篇
  2001年   5篇
  2000年   5篇
  1999年   1篇
  1998年   6篇
  1996年   3篇
  1995年   1篇
  1994年   5篇
  1993年   1篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1981年   5篇
  1980年   2篇
  1979年   1篇
  1977年   2篇
  1975年   1篇
  1973年   1篇
排序方式: 共有170条查询结果,搜索用时 296 毫秒
1.
To use two small fish Rivulus marmoratus (Cyprinodontiformes, Rivulidae) and the Japanese medaka Oryzias latipes (Belloniformes) as testing models in molecular ecotoxicology, we have cloned the cytochrome P450 1A (CYP1A) gene after screening of both genomic DNA libraries, and sequenced 11,863 and 7,243 bp including all the exons and introns with promoter regions, respectively. The Rivulus and the medaka CYP1A gene consisted of seven exons (including non-coding exons) with high homology to mammals. In the promoter region, Rivulus CYP1A gene has seven xenobiotic response elements (XREs) and two metal response elements (MREs), while the Japanese medaka CYP1A gene has six XREs and four MREs. Interestingly, medaka CYP1A gene has a number of MREs at the promoter, which may affect its response on metal exposure. We describe here the gene structure of both fish CYP1A genes.  相似文献   
2.
The structure of the turbulent boundary layer underneath laboratory wind waves was studied by using a combination of a high-sensitivity thermometer array with a two-component sonic flowmeter. The temperature fluctuations are used to detect movements of water parcels, with temperature as a passive quantity. The turbulence energy was dominant in the frequency range (0.01 0.1 Hz), which was much smaller than the wind-wave frequency (2 5 Hz), and in which the turbulence was anisotropic. There was a frequency range (0.2 2 Hz for velocity, 0.2 5 Hz for temperature fluctuation) where the turbulence was isotropic and had a –5/3 slope in the energy spectrum. These points are the same as those in previous works. However, by analyses of the time series by using a variable-interval time-averaging technique (VITA), it has been found that conspicuous events in this main turbulence energy band are the downward bursting from the vicinity of the water surface. Thus the structure of the water layer underneath the wind waves has characters which are similar to the familiar turbulent boundary layer over a rough solid wall, as already conceived. It has been found that, at the same time, the turbulence energy can be related to quantities of the wind waves (the root mean squared water level fluctuation and the wave peak frequency), for different wind and wave conditions. That is, the turbulence underneath the wind waves develops under a close coupling with the wind waves.  相似文献   
3.
The Formation and Circulation of the Intermediate Water in the Japan Sea   总被引:1,自引:0,他引:1  
In order to clarify the formation and circulation of the Japan/East Sea Intermediate Water (JESIW) and the Upper portion of the Japan Sea Proper Water (UJSPW), numerical experiments have been carried out using a 3-D ocean circulation model. The UJSPW is formed in the region southeast off Vladivostok between 41°N and 42°N west of 136°E. Taking the coastal orography near Vladivostok into account, the formation of the UJSPW results from the deep water convection in winter which is generated by the orchestration of fresh water supplied from the Amur River and saline water from the Tsushima Warm Current under very cold conditions. The UJSPW formed is advected by the current at depth near the bottom of the convection and penetrates into the layer below the JESIW. The origin of the JESIW is the low salinity coastal water along the Russian coast originated by the fresh water from the Amur River. The coastal low salinity water is advected by the current system in the northwestern Japan Sea and penetrates into the subsurface below the Tsushima Warm Current region forming a subsurface salinity minimum layer. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
4.
In order to determine why the sedimentation to supply ratio of nutrients in Tokyo Bay is markedly small, the nitrogen budget was investigated for 1979, when a systematic and continuous observation of flow and salinity was carried out. The data were analyzed by use of a simple advective-diffusive box model and dissolved oxygen balance in the lower layer was also examined. The calculated values of two-layer flow, settling, primary production, mineralization, denitrification, and dissolved oxygen consumption were comparable to those observed.The factors making the sedimentation to supply ratio makedly small were summarized as: 1) a strong and stable two-layer flow generated by a large freshwater supply, 2) further intensification of this two-layer flow by the northern winter monsoon, 3) coincidence of the discharge region with the supply region of nutrients caused by the transverse inclination of the interface, probably due to the earth's rotation. 4) effective discharge of nutrients from the bay due to a strong tidal flow and a possible cyclonic tidal residual circulation in the inner bay mouth, 5) incomplete consumption of nutrient salts by phytoplankton in the upper layer even in the most productive season, and 6) possible denitrification in the anaerobic bottom water in summer and in the bottom sediment itself throughout the year in the inner bay.  相似文献   
5.
Vertical distribution of anthropogenic carbon content of the water (exDIC) in the Oyashio area just outside of the Kuroshio/Oyashio Interfrontal Zone (K/O Zone) was estimated by the simple 1-D advection-diffusion model calibrated by the distribution of chlorofluorocarbons (CFCs). The average concentration of exDIC for = 26.60–27.00 is multiplied by the volume transport of Oyashio water into the North Pacific Intermediate Water (NPIW) to estimate the annual transport of exDIC into NPIW through K/O Zone. The estimated transport of exDIC was 0.018–0.020 GtC/y, which corresponds to 15% of the whole total exDIC accumulation in the temperate North Pacific. A simple assessment using the NPIW 1-box model indicates that the current study explains at least 70% of the total annual transport of exDIC into NPIW, and that small exDIC sources for NPIW still exists in addition to K/O Zone.  相似文献   
6.
The purpose of this study is to validate and improve satellite-derived downward surface shortwave radiation (DSSR) over the northwestern Pacific Ocean using abundant in situ data. The DSSR derivation model used here assumes that the reduction of solar radiation by clouds is proportional to the product of satellite-measured albedo and a cloud attenuation coefficient. DSSR is calculated from Geostationary Meteorological Satellite-5/Visible Infrared Spin-Scan Radiometer data in 0.05° × 0.05° grids. The authors first compare the satellite DSSR derived with a cloud attenuation coefficient table determined in past research with in situ values. Although the hourly satellite DSSR agrees well with land in situ values in Japan, it has a bias of +13∼+34 W/m2 over the ocean and the bias is especially large in the low latitudes. The authors then improve the coefficient table using the ocean in situ data. Usage of the new table successfully reduces the bias of the satellite DSSR over the ocean. The cloud attenuation coefficient for low-albedo cases over the ocean needs to be larger in the low latitudes than past research has indicated. Daily and hourly DSSR can be evaluated from the satellite data with RMS errors of 11–14% and 30–33%, respectively, over a wide region of the ocean by this model. It is also shown that the cloud attenuation coefficient over land needs to be smaller than over the ocean because the effect of the radiation reflected by the land surface cannot be ignored.  相似文献   
7.
The effects of scattering and resonance on the energy dissipation of an internal tide were investigated using a two-dimensional model which is a reassembled version of the theoretical generation model devised by Rattray et al. (1969) for internal tide. The basic character of the scattering process at the step bottom was first investigated with a wide shelf model. When the internal wave incited from a deep region (Region II) into the shallow shelf region (Region I), a passing wave into the shallow region, a reflected wave into the deep region, and a beam-like wave, i.e. a scattered wave (SW), emanated at the step bottom. The SW, which consists of the superposition of numerous internal modes, propagated upward/downward into both regions. The general properties of the SW were well expressed around the shelf edge, even in the present model with viscosity effect. The amplitude of the SW decreased dramatically when the depth of the velocity maximum of the incident internal wave in Region II corresponded with the depth of the shelf edge. In the narrow shelf model, where the decay distance of the internal wave in Region I is longer than the shelf width, the incident internal wave reflected at the coast to form a standing wave. When the internal wave in Region I is enhanced by the resonance, the energy of the SW in Region II is also intensified. Furthermore, the energy of the modes in Region II predominated when the velocity maximum is identical to that of the dominant mode in Region I. These results suggest that the spatial scale of shelf region is a very important factor governing the energy dissipation of the internal tide through reflection and scattering in a narrow shelf.  相似文献   
8.
During the concentrated observation (April–May 1988) conducted as a part of the Ocean Mixed Layer Experiment (OMLET) in the sea area south of Japan, a conspicuous outbreak of warm water occurred from the large-meander region of the Kuroshio toward the southwest in the direction of the former Ocean Weather Station “T”. A series of NOAA-AVHRR infrared images clearly showed the process of this event. A surface buoy-mooring system deployed in this experiment recorded the arrival of this outbreak of water, in terms of the rise of sea-surface temperature (SST) of 1.5°C and the flow of warm water of 1.5kt toward the northwest at “T”. We studied this phenomenon by combining time series of infrared SST images with the oceanographic data obtained by two research vessels. The warm water was about 100 m deep in the section at 137°E along the edge of the Off-Shikoku Warm Water. It was estimated that about twenty outbreaks of this kind in a year can compensate a large heat loss to the atmosphere above this ocean region.  相似文献   
9.
This study compares infrared and microwave measurements of sea surface temperature (SST) obtained by a single satellite. The simultaneous observation from the Global Imager (GLI: infrared) and the Advanced Microwave Scanning Radiometer (AMSR: microwave) aboard the Advanced Earth Observing Satellite-II (ADEOS-II) provided an opportunity for the intercomparison. The GLI-and AMSR-derived SSTs from April to October 2003 are analyzed with other ancillary data including surface wind speed and water vapor retrieved by AMSR and SeaWinds on ADEOS-II. We found no measurable bias (defined as GLI minus AMSR), while the standard deviation of difference is less than 1°C. In low water vapor conditions, the GLI SST has a positive bias less than 0.2°C, and in high water vapor conditions, it has a negative (positive) bias during the daytime (nighttime). The low spatial resolution of AMSR is another factor underlying the geographical distribution of the differences. The cloud detection problem in the GLI algorithm also affects the difference. The large differences in high-latitude region during the nighttime might be due to the GLI cloud-detection algorithm. AMSR SST has a negative bias during the daytime with low wind speed (less than 7 ms−1), which might be related to the correction for surface wind effects in the AMSR SST algorithm.  相似文献   
10.
In order to investigate the validity of buoy-observed sea surface temperature (SST), we installed special instruments to measure near-surface ocean temperature on the TRITON buoy moored at 2.07°N, 138.06°E from 2 to 13 March 2004, in addition to a standard buoy sensor for the regular SST measurement at 1.5-m depth. Large diurnal SST variations were observed during this period, and the variations of the temperatures at about 0.3-m depth could be approximately simulated by a one-dimensional numerical model. However, there was a notable discrepancy between the buoy-observed 1.5-m-depth SST (SST1.5m) and the corresponding model-simulated temperature only during the daytime when the diurnal rise was large. The evaluation of the heat balance in the sea surface layer showed that the diurnal rise of the SST1.5m in these cases could not be accounted for by solar heating alone. We examined the depth of the SST1.5m sensor and the near-surface temperature observed from a ship near the buoy, and came to the conclusion that the solar heating of the buoy hull and/or a disturbance in the temperature field around the buoy hull would contribute to the excessive diurnal rise of the SST1.5m observed with the TRITON buoy. However, the temperature around the hull was not sufficiently homogenized, as suggested in a previous paper. For the diurnal rise of the SST1.5m exceeding 0.5 K, the daytime buoy data became doubtful, through dynamics that remain to be clarified. A simple formula is proposed to correct the unexpected diurnal amplitude of the buoy SST1.5m.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号