首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地质学   4篇
海洋学   1篇
天文学   2篇
自然地理   1篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2005年   1篇
  2003年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有8条查询结果,搜索用时 171 毫秒
1
1.
Myra Keep   《Tectonophysics》2003,375(1-4):37
Structural vergence within the Western Subprovince of the Lachlan Fold Belt is towards the hinterland rather than the foreland, in contrast to many well-known orogenic belts. High angle-reverse faults and upright folds verge eastwards, away from the Australian craton, towards the inferred centre of orogenic and magmatic activity. We designed a series of analogue models to test the anomalous vergence in the western Lachlan Fold Belt, particularly the interaction of a stable Australian craton with Tasman Line geometry, interacting with weaker oceanic or transitional lithospheric material. We found consistently that vergence direction in the models was towards the hinterland, not the foreland, as in the western Lachlan Fold Belt, irrespective of the way the model was deformed. Strength gradients between the oceanic and cratonic lithosphere control the deformation patterns. An important result of the models is that they demonstrate that fold belts with different vergences can be generated without the requirement of subducting oceanic lithosphere.  相似文献   
2.
The Cablac Limestone, widely recorded in Timor, has its type area on Cablac Mountain where it was regarded as a Lower Miocene shallow-marine carbonate-platform succession. The Bahaman-like facies placed in the Cablac Limestone are now known to belong to the Upper Triassic–Lower Jurassic rather than the Lower Miocene. On the northern slopes of Cablac Mountain, a crush breccia, formerly regarded as the basal conglomerate of the formation, is now considered to have developed along a high-angle fault separating Banda Terrane units of Asian affinity from an overthrust limestone stack containing units belonging to the Gondwana and Australian-Margin Megasequences. The Cablac breccia includes rock fragments that were probably derived locally from these tectonostratigraphic units after terrane emplacement and overthrusting. Clasts include peloid and oolitic limestones of the Upper Triassic–Lower Jurassic derived from the Gondwana Megasequence, deep-water carbonate pelagites of the Cretaceous and Paleogene derived from the Australian-Margin Megasequence, Upper Oligocene–Lower Miocene (Te Letter Stage) shallow-water limestone derived from the Banda Terrane, and a younger Neogene calcarenite containing clasts of mixed tectonostratigraphic affinity. There is no evidence for significant sedimentary or tectonic transport of clasts that form the breccia. The clast types and the present understanding of the geological history of Timor suggest that the crush breccia formed late in the Plio-Pleistocene uplift history of Timor. It is not the basal conglomerate of the Cablac Limestone. However, the clasts of an Upper Oligocene–Lower Miocene limestone found in the breccia suggest that a shallow-marine limestone unit of this age either outcrops in the region and has not been detected in the field, or has been eroded completely during late Neogene uplift. The clasts are similar in age and lithology to an Upper Oligocene–Lower Miocene formation that unconformably overlies a metamorphic complex in the Booi region of West Timor, similar to the Lolotoi Metamorphic Complex (Banda Terrane) that is juxtaposed against the crush breccia of Cablac Mountain. The Cablac Limestone at its type area includes a mixed assemblage of carbonate rock units ranging in age from Triassic to Plio-Pleistocene and representing diverse facies. As a formation, the name “Cablac Limestone” should be discarded for a Cenozoic unit. The Upper Oligocene–Lower Miocene shallow-water limestone unit that is typified by outcrops in the Booi region of West Timor, and that has contributed to clasts in the Cablac breccia, is informally named the Booi limestone. It is considered part of the allochthonous Banda Terrane of Asian affinity and represents the only shallow-marine Lower Miocene unit known from Timor. The only other Miocene sedimentary unit known from Timor includes carbonate pelagites – designated the Kolbano beds – probably deposited on an Australian continental terrace at water depths between 1000 and 3000 m. On the northeastern edge of Cablac Mountain, oolitic limestone and associated units of the Gondwana Megasequence, the Kolbano beds of the Australian-Margin Megasequence, and the Booi limestone and associated metasediments of the Banda Terrane were juxtaposed by a Plio-Pleistocene high-angle fault along which the Cablac crush breccia formed.  相似文献   
3.
Results are given from collections made during eight cruises over the northeastern continental shelf. Seasonal phytoplankton assemblages are noted, which include a variety of ultraplankton components. Areas of greatest cell concentrations were at near shore stations, Georges Bank, and at scattered sites over the shelf. Dominant species included Skeletonema costatum, Asterionella glacialis and Leptocylindrus danicus.  相似文献   
4.
Affected by thermal perturbation due to mantle uprising,the rheological structure of the lithosphere could be modified,which could lead to different rifting patterns from shelf to slope in a passive continental margin.From the observed deformation style on the northern South China Sea and analogue modeling experiments,we find that the rift zone located on the shelf is characterized by half grabens or simple grabens controlled mainly by long faults with large vertical offset,supposed to be formed with normal lithasphere extension.On the slope,where the lithosphere is very hot due to mantle upwelling and heating,composite grabens composed of symmetric grabens developed.The boundary and inner faults are all short with small vertical offset.Between the zones with very hot and normal lithosphere,composite half grnbens composed of half grabens or asymmetric grabens formed,whose boundary faults are long with large vertical offset,while the inner faults are relatively short.Along with the thickness decrease of the brittle upper crust due to high temperature,the deformation becomes more sensitive to the shape of a pre-existing weakness zone and shows orientation variation along strike.When there was a bend in the pre-existing weakness zone,and the basal plate was pulled by a clockwise rotating stress,the strongest deformation always occurs along the middle segment and at the transition area from the middle to the eastern segments,which contributes to a hotter lithosphere in the middle segment,where the Baiyun (白云) sag formed.  相似文献   
5.
Neogene collision between Australia and the Banda Arc modified two adjacent depocentres within Australia's North‐West Shelf, the Browse and Bonaparte Basins. We identify two components of this modification: (1) continuous long‐wavelength amplification of Permo‐Carboniferous basement topography, and (2) flexure and normal faulting of Triassic–Recent sedimentary cover. Although this deformation was continuous across the Browse and Bonaparte Basins, the degree of basement architectural control, mechanisms of fault linkage and distribution of syntectonic accommodation space varied significantly between the two basins. These variations reflect fundamental differences in the structural relief, amplitude and depth of rifted basement on either side of a rupture‐barrier‐style accommodation zone, the Browse/Bonaparte Transition. This long‐lived architectural divide, of which there is no discrete structural expression, was amplified by Neogene collision. We examine tectonic rejuvenation of the Browse/Bonaparte Transition and describe a mechanism for actively sustaining long‐lived segmentation of the continental shelf.  相似文献   
6.
We show that radiation emitted from material freely falling toward a black hole or neutron star cannot be blue-shifted as recently claimed by Cohen and Struble. The relativistic corrections to the classical apparent limb angle are given explicitly for spherical sources in collapse.  相似文献   
7.
The National Ignition Facility (NIF) is capable of creating new and novel high-energy-density (HED) systems relevant to astrophysics. Specifically, a system could be created that studies the effects of a radiative shock on a hydrodynamically unstable interface. These dynamics would be relevant to the early evolution after a core-collapse supernova of a red supergiant star. Prior to NIF, no HED facility had enough energy to perform this kind of experiment. The experimental target will include a 340 ??m predominantly plastic ablator followed by a low-density SiO2 foam. The interface will have a specific, machined pattern that will seed hydrodynamic instabilities. The growth of the instabilities in a radiation-dominated environment will be observed. This experiment requires a ??300?eV hohlraum drive and will be diagnosed using point projection pinhole radiography, which have both been recently demonstrated on NIF.  相似文献   
8.
The opening of the South China Sea is one of the most important Cenozoic events in SE Asia. In order to investigate its tectonic evolution, three analogue modeling experiments were compared. The modeling results suggest that rifting pattern and orientation change of the rift zone were related to initial rheological stratification. Affected by the ductile flow of silicone (lower crust) and honey (asthenosphere), the faults became flattened, especially close to the breakup area. We conjecture that the slope area may bear relatively hotter and thinner lithosphere than the shelf area from the beginning of rifting due to stretching and mantle upwelling associated with this regional extension, which in turn lead to the change in initial rheological stratification and therefore the rifting pattern from shelf to slope. In the experiments, breakup developed first at isolated points, which grew and coalesced to become a single spreading area. The conjugate boundaries were either all concave or all convex. Where a rigid massif was located at the divergent boundary, stretching history was different. In this case, the northern and southern areas thinned rapidly and developed into two deep troughs, which may finally evolve into spreading centers. The shape of the massif controls the orientation and boundary shape of the spreading area. It is interpreted that crustal breakup was more viscous in style, and the NW sub sea basin developed along the northern trough of the Zhongsha-Xisha massif (Macclesfield Bank).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号