首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179768篇
  免费   3121篇
  国内免费   1657篇
测绘学   4680篇
大气科学   12556篇
地球物理   35927篇
地质学   64942篇
海洋学   15785篇
天文学   39453篇
综合类   604篇
自然地理   10599篇
  2022年   991篇
  2021年   1689篇
  2020年   1893篇
  2019年   2042篇
  2018年   5213篇
  2017年   4847篇
  2016年   5559篇
  2015年   2948篇
  2014年   5051篇
  2013年   9177篇
  2012年   5711篇
  2011年   8025篇
  2010年   7006篇
  2009年   8917篇
  2008年   7804篇
  2007年   7939篇
  2006年   6719篇
  2005年   5273篇
  2004年   5312篇
  2003年   4981篇
  2002年   4743篇
  2001年   4106篇
  2000年   3921篇
  1999年   3247篇
  1998年   3377篇
  1997年   3103篇
  1996年   2784篇
  1995年   2731篇
  1994年   2380篇
  1993年   2214篇
  1992年   2124篇
  1991年   2086篇
  1990年   2190篇
  1989年   1892篇
  1988年   1722篇
  1987年   2028篇
  1986年   1764篇
  1985年   2215篇
  1984年   2505篇
  1983年   2336篇
  1982年   2204篇
  1981年   2067篇
  1980年   1877篇
  1979年   1765篇
  1978年   1740篇
  1977年   1525篇
  1976年   1472篇
  1975年   1443篇
  1974年   1417篇
  1973年   1501篇
排序方式: 共有10000条查询结果,搜索用时 25 毫秒
1.
The Bear Brook Watershed in Maine (BBWM) is a long-term research site established to study the response of forest ecosystem function to environmental disturbances of chronic acidic deposition and ecosystem nitrogen enrichment. Starting in 1989, the West Bear (treated) watershed received bimonthly applications of ammonium sulfate [(NH4)2SO4] fertilizer from above the canopy, whereas East Bear (reference) received ambient deposition. The treatments were stopped in 2016, marking the beginning of the recovery phase. Research at the site has focused on soils, streams, and vegetation. Here, we describe data collected over three decades at the BBWM—input and stream output nutrient fluxes, quantitative soil pits and soil chemistry, and soil temperature and moisture.  相似文献   
2.
In snowmelt-driven mountain watersheds, the hydrologic connectivity between meteoric waters and stream flow generation varies strongly with the season, reflecting variable connection to soil and groundwater storage within the watershed. This variable connectivity regulates how streamflow generation mechanisms transform the seasonal and elevational variation in oxygen and hydrogen isotopic composition (δ18O and δD) of meteoric precipitation. Thus, water isotopes in stream flow can signal immediate connectivity or more prolonged mixing, especially in high-relief mountainous catchments. We characterized δ18O and δD values in stream water along an elevational gradient in a mountain headwater catchment in southwestern Montana. Stream water isotopic compositions related most strongly to elevation between February and March, exhibiting higher δ18O and δD values with decreasing elevation. These elevational isotopic lapse rates likely reflect increased connection between stream flow and proximal snow-derived water sources heavily subject to elevational isotopic effects. These patterns disappeared during summer sampling, when consistently lower δ18O and δD values of stream water reflected contributions from snowmelt or colder rainfall, despite much higher δ18O and δD values expected in warmer seasonal rainfall. The consistently low isotopic values and absence of a trend with elevation during summer suggest lower connectivity between summer precipitation and stream flow generation as a consequence of drier soils and greater transpiration. As further evidence of intermittent seasonal connectivity between the stream and adjacent groundwaters, we observed a late-winter flush of nitrate into the stream at higher elevations, consistent with increased connection to accumulating mineralized nitrogen in riparian wetlands. This pattern was distinct from mid-summer patterns of nitrate loading at lower elevations that suggested heightened human recreational activity along the stream corridor. These observations provide insights linking stream flow generation and seasonal water storage in high elevation mountainous watersheds. Greater understanding of the connections between surface water, soil water and groundwater in these environments will help predict how the quality and quantity of mountain runoff will respond to changing climate and allow better informed water management decisions.  相似文献   
3.
This paper presents the first application of an advanced meshfree method, ie, the edge-based smoothed point interpolation method (ESPIM), in simulation of the coupled hydro-mechanical behaviour of unsaturated porous media. In the proposed technique, the problem domain is spatially discretised using a triangular background mesh, and the polynomial point interpolation method combined with a simple node selection scheme is adopted for creating nodal shape functions. Smoothing domains are formed on top of the background mesh, and a constant smoothed strain, created by applying the smoothing operation over the smoothing domains, is assigned to each smoothing domain. The deformation and flow models are developed based on the equilibrium equation of the mixture, and linear momentum and mass balance equations of the fluid phases, respectively. The effective stress approach is followed to account for the coupling between the flow and deformation models. Further coupling among the phases is captured through a hysteretic soil water retention model that evolves with changes in void ratio. An advanced elastoplastic constitutive model within the context of the bounding surface plasticity theory is employed for predicting the nonlinear behaviour of soil skeleton. Time discretisation is performed by adopting a three-point discretisation method with growing time steps to avoid temporal instabilities. A modified Newton-Raphson framework is designed for dealing with nonlinearities of the discretised system of equations. The performance of the numerical model is examined through a number of numerical examples. The state-of-the-art computational scheme developed is useful for simulation of geotechnical engineering problems involving unsaturated soils.  相似文献   
4.
To date, passive flux meters have predominantly been applied in temperate environments for tracking the movement of contaminants in groundwater. This study applies these instruments to reduce uncertainty in (typically instantaneous) flux measurements made in a low-gradient, wetland dominated, discontinuous permafrost environment. This method supports improved estimation of unsaturated and over-winter subsurface flows which are very difficult to quantify using hydraulic gradient-based approaches. Improved subsurface flow estimates can play a key role in understanding the water budget of this landscape.  相似文献   
5.
6.
Geomagnetism and Aeronomy - The results of a study of the geoelectric section of the upper layers of the Earth at observation sites in Yakutia via vertical electrical sounding and surface impedance...  相似文献   
7.
Wetlands represent one of the world's most biodiverse and threatened ecosystem types and were diminished globally by about two‐thirds in the 20th century. There is continuing decline in wetland quantity and function due to infilling and other human activities. In addition, with climate change, warmer temperatures and changes in precipitation and evapotranspiration are reducing wetland surface and groundwater supplies, further altering wetland hydrology and vegetation. There is a need to automate inventory and monitoring of wetlands, and as a study system, we investigated the Shepard Slough wetlands complex, which includes numerous wetlands in urban, suburban, and agricultural zones in the prairie pothole region of southern Alberta, Canada. Here, wetlands are generally confined to depressions in the undulating terrain, challenging wetlands inventory and monitoring. This study applied threshold and frequency analysis routines for high‐resolution, single‐polarization (HH) RADARSAT‐2, synthetic aperture radar mapping. This enabled a growing season surface water extent hyroperiod‐based wetland classification, which can support water and wetland resource monitoring. This 3‐year study demonstrated synthetic aperture radar‐derived multitemporal open‐water masks provided an effective index of wetland permanence class, with overall accuracies of 89% to 95% compared with optical validation data, and RMSE between 0.2 and 0.7 m between model and field validation data. This allowed for characterizing the distribution and dynamics of 4 marsh wetlands hydroperiod classes, temporary, seasonal, semipermanent, and permanent, and mapping of the sequential vegetation bands that included emergent, obligate wetland, facultative wetland, and upland plant communities. Hydroperiod variation and surface water extent were found to be influenced by short‐term rainfall events in both wet and dry years. Seasonal hydroperiods in wetlands were particularly variable if there was a decrease in the temporary or semipermanent hydroperiod classes. In years with extreme rain events, the temporary wetlands especially increased relative to longer lasting wetlands (84% in 2015 with significant rainfall events, compared with 42% otherwise).  相似文献   
8.
9.
In order to model non‐Fickian transport behaviour in groundwater aquifers, various forms of the time–space fractional advection–dispersion equation have been developed and used by several researchers in the last decade. The solute transport in groundwater aquifers in fractional time–space takes place by means of an underlying groundwater flow field. However, the governing equations for such groundwater flow in fractional time–space are yet to be developed in a comprehensive framework. In this study, a finite difference numerical scheme based on Caputo fractional derivative is proposed to investigate the properties of a newly developed time–space fractional governing equations of transient groundwater flow in confined aquifers in terms of the time–space fractional mass conservation equation and the time–space fractional water flux equation. Here, we apply these time–space fractional governing equations numerically to transient groundwater flow in a confined aquifer for different boundary conditions to explore their behaviour in modelling groundwater flow in fractional time–space. The numerical results demonstrate that the proposed time–space fractional governing equation for groundwater flow in confined aquifers may provide a new perspective on modelling groundwater flow and on interpreting the dynamics of groundwater level fluctuations. Additionally, the numerical results may imply that the newly derived fractional groundwater governing equation may help explain the observed heavy‐tailed solute transport behaviour in groundwater flow by incorporating nonlocal or long‐range dependence of the underlying groundwater flow field.  相似文献   
10.
Studying seismic wave propagation across rock masses and the induced ground motion is an important topic, which receives considerable attention in design and construction of underground cavern/tunnel constructions and mining activities. The current study investigates wave propagation across a rock mass with one fault and the induced ground motion using a recursive approach. The rocks beside the fault are assumed as viscoelastic media with seismic quality factors, Qp and Qs. Two kinds of interactions between stress waves and a discontinuity and between stress waves and a free surface are analyzed, respectively. As the result of the wave superposition, the mathematical expressions for induced ground vibration are deduced. The proposed approach is then compared with the existing analysis for special cases. Finally, parametric studies are carried out, which includes the influences of fault stiffness, incident angle, and frequency of incident waves on the peak particle velocities of the ground motions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号