首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   39篇
  国内免费   44篇
测绘学   10篇
大气科学   31篇
地球物理   16篇
地质学   81篇
海洋学   16篇
综合类   15篇
自然地理   9篇
  2024年   2篇
  2023年   6篇
  2022年   16篇
  2021年   13篇
  2020年   10篇
  2019年   10篇
  2018年   8篇
  2017年   4篇
  2016年   3篇
  2015年   1篇
  2013年   3篇
  2012年   6篇
  2011年   1篇
  2010年   11篇
  2009年   4篇
  2008年   8篇
  2007年   10篇
  2006年   5篇
  2005年   10篇
  2004年   9篇
  2003年   3篇
  2002年   8篇
  2001年   3篇
  2000年   5篇
  1999年   4篇
  1997年   6篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1992年   1篇
排序方式: 共有178条查询结果,搜索用时 187 毫秒
1.
库鲁克塔格地区二叠纪脉岩群非常发育,主要岩石类型是辉绿岩,并有少量的斜闪煌斑岩、斜长玢岩和花岗斑岩。花岗斑岩属高钾钙碱性系列,具有A型花岗岩的稀土元素和微量元素地球化学特征;斜长玢岩的地球化学特征与花岗斑岩相似,二者都亏损U、Nb、Ta。斜闪煌斑岩的岩石化学组成属过碱性系列,显著富集轻稀土元素和大离子亲石元素。辉绿岩的岩石化学组成以钙碱性系列为主,稀土元素总量变化较大,Cs、Rb、Ba、Th元素丰度变化大,普遍亏损U、Nb、Ta。研究证明,辉绿岩脉的这些地球化学特征都与同化混染作用有关,大离子亲石元素丰度的变化还与热液蚀变有关。辉绿岩具有富集型Nd、Sr同位素组成,且变化范围大,是岩浆源区同化混染作用的结果。它们的铅同位素组成属低U(Th)/Pb值的正常铅,主要受混染物控制,并不代表源区特征。库鲁克塔格地区岩石圈地幔Nd、Sr、Pb同位素比塔里木板块西缘岩石圈地幔的富集程度更高,且变化范围大,反映了这两个地区岩石圈地幔的演化历史存在明显差异。  相似文献   
2.
北京北部城区 SO2和NO2浓度垂直分布特点初探   总被引:11,自引:3,他引:11  
2001年1~3月在中国科学院大气物理研究所320 m铁塔10个不同高度(320、240、200、140、100、80、47、15、8 m和地面)使用无动力扩散采样器对SO2和NO2日平均总量及夜间平均浓度进行了观测.结果表明,200m以下高度SO2和NO2浓度较大.北京城区不同高度大气中SO2的浓度1月份最高.NO2浓度1月份和2月份呈现高值.不同高度SO2和NO2浓度与逆温强度有明显的正相关.  相似文献   
3.
试论陆壳增生的两种基本模式及其对比   总被引:2,自引:0,他引:2  
大陆地壳是地球形成演化的必然产物。大陆地壳由不同时代、不同类型、不同规模地体的拼贴而增生;同时已形成的大陆地壳沿着新的断裂分裂、离散而碱小。因此大陆地壳是地体拼贴增生与分裂离散的综合结果。太古代早期,原始陆壳形成后,主要通过环太平洋型与天山型两种基本模式达到陆壳的增生。环太平洋型陆壳增生模式出现于陆块的边缘,由古大陆向大洋方向单向增生,增生年代由老到新,增生地体一般都有较大距离的移置,其增生与板块的俯冲作用密切有关。天山型陆壳增生模式出现在陆块的内部,其形成与陆块的开台作用密切有关,可以但不一定伴随有俯冲作用。当古大陆沿一定方向断裂带分裂、离散。其间形成新的海槽接受碳酸盐岩和正常陆源碎屑沉积物与来自地壳深部或地幔的火山物质。由于壳下应力条件改变,两侧古陆相向运动,海槽中物质受两侧古陆碰撞挤压,形成褶皱造山带,并把两侧的古大陆“焊接”成新的、范围更大的大陆地壳。  相似文献   
4.
构造地质学计算机辅助教学课件SGCAI   总被引:2,自引:0,他引:2  
构造地质学计算机辅助教学课件(SGCAI)利用数据库,图形动画及多媒体等技术,对地质学基础课程的计算机辅助教学研究作了初步探索,课件分为学生学习,教师管理,附属功能和执行四大模块,具有学习选择,图片说明,动画演示,练习测验,辅导答题等十个功能,课件设计新颖,技术全面,使用方便,使用该课件能充分调动学生学习的主观能动性,使学生成为真正的学习主体,有助于提高教学质量。  相似文献   
5.
The wave velocity for two types of granitoids was measured using the analytic method of full-wave vibration at high pressure and high temperature. The laws of velocity changes for them differ with the pressure boost and temperature rise, and the velocity change of S-type is more violent than that of I-type. The “softening point” of compressional wave velocity (V μ) is also revealed during the measurement for two types of granitoids imitating the pressure and temperature at a certain depth. But the depth of “softening”, Vp after “softening” and the percentage of Vp’s drop around the “sofrening point” for two types of granitoids are obviously different. The depth of “softening” is 15 km approximately and Vp after “softening” is 5.62 km/s for S-type granitoid. But for I-type granitoid the depth of “softening” is 26 km approximately and Vp after “softening” is 6. 08 km/s. Through careful analysis of rock slices after the experiment, it was found that the “softening” of elastic-wave velocity is caused by the partial melting of granite. Combined with the results of geophysical prospecting, these results suggest that the low-velocity layers developing in the interior of Earth crust are related to thc partial melting of different types of granitoids. The formation of the low-velocity layer in the upper-middle Earth crust is closely related to the development of S-type granitoid, but that in the lower Earth crust is closely related to the development of I-type granitoid.  相似文献   
6.
The vertical structures and their dynamical character of PM2.5 and PM10 over Beijing urban areas are revealed using the 1 min mean continuous mass concentration data of PM2.5 and PM10 at 8, 100, and 320 m heights of the meteorological observation tower of 325 m at Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP CAS tower hereafter) on 10―26 August, 2003, as well as the daily mean mass concentration data of PM2.5 and PM10 and the continuous data of CO and NO2 at 8, 100 (low layer), 200 (middle layer), and 320 m (high layer) heights, in combination with the same period meteorological field observation data of the meteorological tower. The vertical distributions of aerosols observed on IAP CAS tower in Beijing can be roughly divided into two patterns: gradually and rapidly decreasing patterns, I.e. The vertical distribution of aerosols in calm weather or on pollution day belongs to the gradually decreasing pattern, while one on clean day or weak cold air day belongs to the rapidly decreasing pattern. The vertical distributive characters of aerosols were closely related with the dynamical/thermal structure and turbulence character of the atmosphere boundary layer. On the clean day, the low layer PM2.5 and PM10 concentrations were close to those at 8 m height, while the concentrations rapidly decreased at the high layer, and their values were only one half of those at 8 m, especially, the concentration of PM2.5 dropped even more. On the clean day, there existed stronger turbulence below 150 m, aerosols were well mixed, but blocked by the more stronger inversion layer aloft, and meanwhile, at various heights, especially in the high layer, the horizontal wind speed was larger, resulting in the rapid decrease of aerosol concentration, I.e. Resulting in the obvious vertical difference of aerosol concentrations between the low and high layers. On the pollution day, the concentrations of PM2.5 and PM10 at the low, middle, and high layers dropped successively by, on average, about 10% for each layer in comparison with those at 8 m height. On pollution days, in company with the low wind speed, there existed two shallow inversion layers in the boundary layer, but aerosols might be, to some extent, mixed below the inversion layer, therefore, on the pollution day the concentrations of PM2.5 and PM10 dropped with height slowly; and the observational results also show that the concentrations at 320 m height were obviously high under SW and SE winds, but at other heights, the concentrations were not correlated with wind directions. The computational results of footprint analysis suggest that this was due to the fact that the 320 m height was impacted by the pollutants transfer of southerly flow from the southern peripheral heavier polluted areas, such as Baoding, and Shijiazhuang of Hebei Province, Tianjin, and Shandong Province, etc., while the low layer was only affected by Beijing's local pollution source. The computational results of power spectra and periods preliminarily reveal that under the condition of calm weather, the periods of PM10 concentration at various heights of the tower were on the order of minutes, while in cases of larger wind speed, the concentrations of PM2.5 and PM10 at 320 m height not only had the short periods of minute-order, but also the longer periods of hour order. Consistent with the conclusion previously drawn by Ding et al., that air pollutants at different heights and at different sites in Beijing had the character of "in-phase" variation, was also observed for the diurnal variation and mean diurnal variation of PM2.5 and PM10 at various heights of the tower in this experiment, again confirming the "in-phase" temporal/spatial distributive character of air pollutants in the urban canopy of Beijing. The gentle double-peak character of the mean diurnal variation of PM2.5 and PM10 was closely related with the evident/similar diurnal variation of turbulent momentum fluxes, sensible heat fluxes, and turbulent kinetic energy at various heights in the urban canopy. Besides, under the condition of calm weather, the concentration of PM2.5 and PM10 declined with height slowly, it was 90% of 8 m concentration at the low layer, a little lesser than 90% at the middle layer, and 80% at the high layer, respectively. Under the condition of weak cold air weather, the concentration remarkably dropped with height, it was 70% of 8 m concentration at the low layer, and 20%―30% at the middle and high layers, especially the concentration of PM2.5 was even lower.  相似文献   
7.
Inorganic gases are commonly seen in eastern China and occasionally in southern China from the shallow water columns above hot and cold springs. The gases contain 68% to nearly 100% CO2, with δ13CCO2 and δ13C1 values in the range of −1.18‰ to −6.00‰ and −19.48‰ to −24.94‰, respectively. All of the 34 large inorganic CO2 and one inorganic methane accumulations discovered in China are distributed in eastern parts of the country, from both onshore and continental shelf basins. No commercial inorganic gas accumulation has been found in central and western China. This is a review of the occurrence and geochemical characteristics of inorganic gas accumulations in Chinese sedimentary basins. A detailed study of gas samples collected from four representative inorganic CO2 pools and one possible inorganic methane pool indicates that inorganic alkane gases typically show δ13C1 values greater than −10‰ versus PDB (mostly −30‰), with a positive stable carbon isotope sequence of δ13C1 < δ 13C2 < δ13C3 < δ 13C4. In contrast, the δ13C1 values of biogenic alkane gases are lighter than −30‰, with a negative isotope sequence (i.e. δ13C1 > δ13C2 > δ 13C3 > δ13C4). Inorganic gases also tend to show less negative δ13CCO2 values (−10‰) than biogenic gases (<−10‰).  相似文献   
8.
Determining the spatio-temporal distribution of the deformation tied to the India-Eurasian convergence and the impact of pre-existing weaknesses on the Cenozoic crustal deformation is significant for understanding how the convergence between India and Eurasia contributed to the development of the Tibetan Plateau. The exhumation history of the northeastern Tibetan Plateau was addressed in this research using a new apatite fission track (AFT) study in the North Qaidam thrust belt (NQTB). Three granite samples collected from the Qaidam Shan pluton in the north tied to the Qaidam Shan thrust, with AFT ages clustering in the Eocene to Miocene. The other thirteen samples obtained from the Luliang Shan and Yuka plutons in the south related to the Luliang Shan thrust and they have showed predominantly the Cretaceous AFT ages. Related thermal history modeling based on grain ages and track lengths indicates rapid cooling events during the Eocene-early Oligocene and since late Miocene within the Qaidam Shan, in contrast to those in the Cretaceous and since the Oligocene-Miocene in the Luliang Shan and Yuka region. The results, combined with published the Cretaceous thermochronological ages in the Qaidam Shan region, suggest that the NQTB had undergo rapid exhumation during the accretions along the southern Asian Andean-type margin prior to the India-Eurasian collision. The Cenozoic deformation initially took place in the North Qaidam thrust belt by the Eocene, which is consistent with the recent claim that the deformation of the northeastern Tibetan Plateau initiated in the Eocene as a response to continental collision between India and Eurasia. The immediate deformation responding to the collision is tentatively attributed to the pre-existing weaknesses of the lithosphere, and therefore the deformation of the northeastern Tibetan Plateau should be regarded as a boundary-condition-dependent process.  相似文献   
9.
Analyzing raw material's structure and performance of bentonite from Panzhihua in Sichuan, the authors think that it is adequate for agglomerant of iron smelting. According to its composition and property we have researched the purification and modification of I/S bentonite under conditions of different dispersants and sodium agent. XRD test result reveals that the essential minerals of Panzhihua bentonite are I/S mixed-layer ones, and FTIR analysis shows that when adding 1 5% sodium pyrophosphate to the bentonite slurry during purification, the composition of quartz in bentonite decreases to less than 4% and I/S is more than 90%. The optimized modification technic conditions are Na2CO3 (4%) and CMC-Na (3%) as modified agents, the clay and water are 10 vs. 1, and the temperature is 75℃. It is 40 min for stirring time and reacting time is 4 h. Under the conditions we can get the modified I/S bentonite with colloid index more than 500 ml/15 g.  相似文献   
10.
提出一种基于GPT2w模型化加权平均温度反演大气可降水量的方法,并分析附加系统偏差改正的模型化加权平均温度对可降水量的影响。结果表明,基于GPT2w模型化加权平均温度反演的大气可降水量的精度与基于Bevis公式计算的加权平均温度反演的大气可降水量的精度相当;对GPT2w模型化加权平均温度进行系统偏差改正后,大气可降水量的精度有一定改善,但改善率不到1%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号