首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   6篇
测绘学   2篇
大气科学   4篇
地球物理   31篇
地质学   36篇
海洋学   24篇
天文学   25篇
自然地理   11篇
  2023年   1篇
  2021年   1篇
  2019年   1篇
  2018年   3篇
  2017年   7篇
  2016年   4篇
  2015年   2篇
  2014年   8篇
  2013年   5篇
  2012年   9篇
  2011年   12篇
  2010年   10篇
  2009年   1篇
  2008年   8篇
  2007年   6篇
  2006年   4篇
  2005年   5篇
  2004年   1篇
  2003年   7篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1978年   2篇
  1977年   2篇
  1970年   2篇
排序方式: 共有133条查询结果,搜索用时 46 毫秒
1.
2.
An ASCA observation of the Jovian impact of the comet Shoemaker-Levy 9 is reported. Four impacts of H, L, Q1 and R were observed and four impacts of B, C, G, and Q2 were observed within 60 minutes after their impacts. No significant flaring of X-ray emission was observed. Upper limit X-ray fluxes of 90 % confidence level, averaged 5 minutes just after the impacts, were 2.4 × 10–13 erg sec–1 cm–2, 3.5 × 10–13 erg sec–1 cm–2, 1.6 × 10–13 erg sec–1 cm–2 and 2.9 × 10–13 erg sec–1 cm–2 for the impacts of H, L, Q1 and R, respectively, in the 0.5(0.7 for H and Q1)–10 keV energy range. However, a hint of X-ray enhancement around Jupiter from July 17 to July 19 was detected with about 2 6 × 10–14 erg sec–1 cm–2 in the 0.5–10 keV energy range.  相似文献   
3.
The fruticose lichen Cetrariella delisei is among the dominant lichen species in the deglaciated High Arctic areas of Svalbard. As part of a study of carbon cycling in the High Arctic, we aimed to estimate the primary production of lichen in a deglaciated area in Ny-Ålesund, Svalbard (79° N), by examining the effects of abiotic factors on the net photosynthesis ( Pn ) and dark respiration ( R ) rates of C. delisei . Experiments were conducted in the snow-free season of 2000 using an open-flow gas exchange system with an infrared gas analyser. Positive photosynthetic activities were observed on rainy days or soon after rainfall when the thallus water content was high, whereas photosynthetic activities dropped below the detectable limit on clear days because of the low thallus water content. Under a sufficiently high thallus water content and close to light saturation, Pn was nearly constant over a wide temperature range of 4–20 °C, while R increased with increasing temperature. We constructed a model for estimating the net primary production ( NPP ) of lichen based on the relationships between abiotic factors and the CO2 exchange rate. The mean, minimum and maximum NPP values in the snow-free season, estimated using meteorological data obtained from 1995–2003, were 5.1, 1.0 and 8.4 g dry wt. m−2 snow-free season−1, respectively. These results suggest that NPP is highly variable and the contribution of lichen to carbon input is small compared with that of vascular plants and mosses in the study site.  相似文献   
4.
5.
The spatial distribution of the strength inside the earth-fill is identified by the sounding tests. In this research, the Swedish weight sounding (SWS) is employed, and the spatial high-density test is performed to identify the spatial correlation structure. Furthermore, the synthesised approach of the SWS and surface wave method, which is one of the geophysical method, is proposed to compensate the shortage of each approach. Consequently, the correlation structure of an earth-fill could be identified accurately, and the high resolution of the spatial distribution could be visualised based on the survey results.  相似文献   
6.
A box model, involving simple heterogeneous reaction processes associated with the production of non-sea-salt sulfate (nss-SO 4 2– ) particles, is used to investigate the oxidation processes of dimethylsulfide (DMS or CH3SCH3) in the marine atmosphere. The model is applied to chemical reactions in the atmospheric surface mixing layer, at intervals of 15 degrees latitude between 60° N and 60° S. Given that the addition reaction of the hydroxyl radical (OH) to the sulfur atom in the DMS molecule is faster at lower temperature than at higher temperature and that it is the predominant pathway for the production of methanesulfonic acid (MSA or CH3SO3H), the results can well explain both the increasing tendency of the molar ratio of MSA to nss-SO 4 2– toward higher latitudes and the uniform distribution with latitude of sulfur dioxide (SO2). The predicted production rate of MSA increases with increasing latitude due to the elevated rate constant of the addition reaction at lower temperature. Since latitudinal distributions of OH concentration and DMS reaction rate with OH are opposite, a uniform production rate of SO2 is realized over the globe. The primary sink of DMS in unpolluted air is caused by the reaction with OH. Reaction of DMS with the nitrate radical (NO3) also reduces DMS concentration but it is less important compared with that of OH. Concentrations of SO2, MSA, and nss-SO 4 2– are almost independent of NO x concentration and radiation field. If dimethylsulfoxide (DMSO or CH3S(O)CH3) is produced by the addition reaction and further converted to sulfuric acid (H2SO4) in an aqueous solution of cloud droplets, the oxidation process of DMSO might be important for the production of aerosol particles containing nss-SO 4 2– at high latitudes.  相似文献   
7.
A photochemical box model is used to simulate seasonal variations in concentrations of sulfur compounds at latitude 40° S. It is assumed that the hydroxyl radical (OH) addition reaction to sulfur in the dimethyl sulfide (DMS) molecule is the predominant pathway for methanesulfonic acid (MSA) production, and that the rate constant increases as the air temperature decreases. Concentration of the nitrate radical (NO3) is a function of the DMS flux, because the reaction of DMS with NO3 is the most important loss mechanism of NO3. While the diurnally averaged concentration of OH in winter is a factor of about 8 smaller than in summer, due to the weak photolysis process, the diurnally averaged concentration of NO3 in winter is a factor of about 4–5 larger than in summer, due to the decrease of DMS flux. Therefore, at middle and high latitudes in winter, atmospheric DMS is mainly oxidized by the reaction with NO3. The calculated ratio of the MSA to SO2 production rates is smaller in winter than in summer, and the MSA to non-sea-salt sulfate (nssSO4 2-) molar ratio varies seasonally. This result agrees with data on the seasonal variation of the MSA/nssSO4 2- molar ratio obtained at middle and high latitudes. The calculations indicate that during winter the reaction of DMS with NO3 is likely to be a more important sink of NOx (NO+NO2) than the reaction of NO2 with OH, and to serve as a significant pathway of the HNO3 production. If dimethyl sulfoxide (DMSO) is produced through the OH addition reaction and is heterogeneously oxidized in aqueous solutions, half of the nssSO4 2- produced in summer may be through the oxidation process of DMSO. It is necessary to further investigate the oxidation products by the reaction of DMS with OH, and the possibility of the reaction of DMS with NO3 during winter.  相似文献   
8.
The performance of a 21-g lithium fluoride bolometer is presented. The background spectrum was measured in the surface laboratory. We derive an exclusion plot for the spin-dependent coupled Weakly Interacting Massive Particles (WIMPs) cross section.  相似文献   
9.
On October 25, 2010, a large earthquake occurred off the coast of the Mentawai islands in Indonesia, generating a tsunami that caused damage to the coastal area of North Pagai, South Pagai, and Sipora islands. Field surveys were conducted soon after the event by several international survey teams, including the authors’. These surveys clarified the tsunami height distribution, the damage that took place, and residents’ awareness of tsunamis in the affected islands. Heights of over 5 m were recorded on the coastal area of the Indian Ocean side of North and South Pagai islands and the south part of Sipora island. In some villages, it was difficult to evacuate immediately after the earthquake because of the lack of routes to higher ground or the presence of rivers. Residents in some villages had taken part in tsunami drills or education; however, not all villages shared awareness of tsunami threats. In the present paper, based on the results of these field surveys, the vulnerability of these islands with regards to future tsunami threats was analyzed. Three important aspects of this tsunami disaster, namely the geographic disadvantage of the islands, the resilience of buildings and other infrastructure, and people’s awareness of tsunamis, are discussed in detail, and corresponding tsunami mitigation strategies are explained.  相似文献   
10.
Snow algae in a 45.97-m-long ice core from the Tyndall Glacier (50°59′05″S, 73°31′12″W, 1756 m a.s.l.) in the Southern Patagonian Icefield were examined for potential use in ice core dating and estimation of the net accumulation rate. The core was subjected to visual stratigraphic observation and bulk density measurements in the field, and later to analyses of snow algal biomass, water isotopes (18O, D), and major dissolved ions. The ice core contained many algal cells that belonged to two species of snow algae growing in the snow near the surface: Chloromonas sp. and an unknown green algal species. Algal biomass and major dissolved ions (Na+, K+, Mg2+, Ca2+, Cl, SO42−) exhibited rapid decreases in the upper 3 m, probably owing to melt water elution and/or decomposition of algal cells. However, seasonal cycles were still found for the snow algal biomass, 18O, D-excess, and major ions, although the amplitudes of the cycles decreased with depth. Supposing that the layers with almost no snow algae were the winter layers without the melt water essential to algal growth, we estimated that the net accumulation rate at this location was 12.9 m a− 1 from winter 1998 to winter 1999, and 5.1 m from the beginning of winter to December 1999. These estimates are similar to the values estimated from the peaks of 18O (17.8 m a− 1 from summer 1998 to summer 1999 and 11.0 m from summer to December 1999) and those of D-excess (14.7 m a− 1 from fall 1998 to fall 1999 and 8.6 m a− 1 from fall to December 1999). These values are much higher than those obtained by past ice core studies in Patagonia, but are of the same order of magnitude as those predicted from various observations at ablation areas of Patagonian glaciers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号