首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   2篇
地球物理   1篇
地质学   16篇
综合类   3篇
自然地理   2篇
  2021年   1篇
  2017年   2篇
  2016年   5篇
  2015年   1篇
  2012年   5篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2006年   2篇
  2004年   1篇
  2001年   1篇
排序方式: 共有22条查询结果,搜索用时 171 毫秒
1.
用强度折减法和FLAC^3D计算边坡的安全系数   总被引:4,自引:0,他引:4  
对采用强度折减法和FLAC^3D计算边坡的安全系数问题进行了研究。对边坡破坏的判断标准、边坡滑面位置的确定及计算参数对安全系数计算结果的影响进行了分析。结果表明,用FLAC计算时,边坡的破坏可以通过节点最大不平衡力突变、节点最大速度突变、特定点位移的不收敛等特征进行判断,同时边坡破坏的滑面也可以由速度等值线图等方法表示出来。另外,通过分析发现,弹性常数、剪胀角等参数对安全系数计算结果的影响不大。  相似文献   
2.
Surprisingly, hypermobility (high velocity and long run-out) is a remarkable feature of large landslides and is still poorly understood. In this paper, a velocity-weakening friction law is incorporated into a depth-averaged landslide model for explaining the higher mobility mechanism of landslides. In order to improve the precision of the calculation, a coupled numerical method based on the finite volume method is proposed to solve the model equations. Finally, several numerical tests are performed to verify the stability of the algorithm and reliability of the model. The comparison between numerical results and experimental data indicates that the presented model can predict the movement of landslide accurately. Considering the effect of velocity-weakening friction law, the presented model can better reflect the hypermobility of landslide than the conventional Mohr–Coulomb friction model. This work shows that the application of a universal velocity-weakening friction law is effective in describing the hypermobility of landslide and predicting the extent of landslides.  相似文献   
3.
Wu  Yong  Li  Xinpo  Zhu  Lei 《Natural Hazards》2021,108(2):2309-2333
Natural Hazards - In the freeze–thaw zone of the eastern Sichuan–Tibet Mountains, the phases of water in cracks show strong seasonal variations, which significantly affect the stability...  相似文献   
4.
Seismic stability analysis of gravity retaining walls   总被引:1,自引:0,他引:1  
A new approach based on the category of upper bound theorem of limit analysis is presented in this study to consider the seismic stability of gravity retaining walls. The retaining wall and the backfill soil were taken as a whole system. For a translational failure mechanism assumed, formulas are provided to calculate directly the yield acceleration and the inclination of the failure surface. An example is shown to illustrate the method. Comparisons are made with limit equilibrium method, and the results are found consistent. Based on a limited parametric study, it is shown that the wall roughness has remarkable influence on the yield acceleration.  相似文献   
5.
Optimal location of piles in slope stabilization by limit analysis   总被引:2,自引:1,他引:1  
Many studies have been conducted to establish the optimal location of a row of piles to reinforce and stabilize slopes. However, the results obtained are very different, and in some cases even inconsistent and contradictory. The factor of safety of piled slopes is determined by the magnitude of resistive forces exerted by the piles on the slope. At the same time, the maximum retaining forces provided by the piles are also affected by the pile position. In this paper, the problem of the optimal location of piles used to stabilize slopes is analyzed using a combination of limit slope stability analysis and the theory of Ito and Matsui (Soils Found 15:43?C59, 8) to calculate limit lateral loads on piles. Using an illustrative example slope, some of the issues including the most effective position, the most suitable position, and the position with the largest safety factor are discussed. The results show that the most effective pile position, the most suitable pile position, and pile position where the factor of safety can take maximum value are different from each other for a given slope.  相似文献   
6.
On May 12, 2008, a magnitude 8.0 earthquake hit Wenchuan County, Sichuan Province resulted in great loss of life and properties. Besides, abundant landslides and slope failures were triggered in the most seriously hit areas and caused disastrous damages to infrastructures and public facilities. Moreover, abundant unstable slopes caused by the quake have the potential to cause damages for a considerable long period of time. The variety of these slopes and the corresponding treatments are connected with the topographical and geological conditions of the sites. It is decided to document and identify some of these major slope instabilities caused by the earthquake and their treatments. The paper shows the condition of a road in Dujiangyan through in situ explorations. The case history showed significant implications to the reconstruction of the quake-hit regions and future disaster prevention and management works.  相似文献   
7.
To explain the failure mechanism of a retaining wall in an earthquake and put forward effective aseismic measures based on energy theory, and taken from the upper bound theorem as a measure, the safety of anchor system is defined, and then the mechanism of input and dissipation of seismic energy is studied. Furthermore, by analyzing the wave characteristics of a destructive earthquake, an aseismic design of a retaining wall is proposed according to the flexible retaining theory. At last, an example is given and the result shows that the seismic behavior of a common rigid retaining wall is poor and the structure fails quickly under large seismic force with specific direction. On the contrary, the new system with an EPS damping layer can dissipate seismic energy well.  相似文献   
8.
Rainfall-infiltration-induced fines migration within soil slopes may alter the local porosity and hydraulic properties of soils, and is known to be a possible cause of the failure of slopes. To investigate the intrinsic mechanisms, a mathematical formulation capable of capturing the main features of the coupled unsaturated seepage and fines migration process has been presented. Within the formulation, an unsaturated erodible soil is treated as a three-phase multi-species porous medium based on mixture theory; mass conservation equations with mass exchange terms together with the rate equations controlling fines erosion and deposition processes are formulated as the governing equations and are solved by the FEM method. The influences of both the fines detachment and deposition on the stability of slopes under rainfall infiltration have been investigated numerically. The results show that depending on whether the fines move out or get captured at pore constrictions, both desired and undesired consequences may arise out of the fines migration phenomenon. It is suggested that more attention should be paid to those slopes susceptible to internal erosion whose safety analysis cannot be predicted by traditional methods.  相似文献   
9.
An approach based on the category of limiting equilibrium analysis is proposed to consider the reinforcing effect of one row of vertical piles on slope under seismic conditions. The approach is based on an uncoupled formulation in which the pile response and slope stability are considered separately. Closed‐form equations are derived, allowing the yield acceleration coefficient to be determined for giving pile characteristics. Results were compared with those obtained using another limit equilibrium method. The effects of pile location on the effectiveness of increasing seismic stability of the slope–pile system were elucidated. It was found out that the piles should be installed in the middle–upper part of the slope to achieve greatest safety, but the pile length and other possible failure modes should be checked carefully in design. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
10.
Among the triggering factors of post-earthquake bedrock landslides,rainfall plays an important role.However,with slope variation,the mechanism of its effects on the failure of rock landslides is not clear.Here,from the viewpoint of fracture mechanics,and based on post-earthquake conditions,the mechanisms of crack propagation,water infiltration and development of the sliding surface were investigated.Then,according to the upper boundary theorem,the effects of water infiltrated into fractures on the stability of rock slopes were analyzed quantitatively.Finally,an example is presented to verify the theory.The results show that the propagation and coalescence of cracks and the lubrication of incipient sliding surfaces are the main causes of the failure of post-earthquake rock landslides in response to rainfall.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号