首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   0篇
测绘学   2篇
地球物理   13篇
地质学   13篇
海洋学   2篇
天文学   61篇
自然地理   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   4篇
  2009年   7篇
  2008年   6篇
  2007年   5篇
  2006年   4篇
  2005年   6篇
  2004年   11篇
  2003年   6篇
  2002年   12篇
  2001年   8篇
  2000年   4篇
  1999年   2篇
  1998年   5篇
  1995年   1篇
  1976年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有92条查询结果,搜索用时 31 毫秒
1.
2.
3.
Coastal erosion presents a serious problem throughout U.S. coastal areas. The Ohio Geological Survey estimates that more than 3,200 acres of Ohio's Lake Erie shore have been lost to erosion since the 1870s, resulting in economic losses exceeding tens of millions of dollars per year. This article presents research results of a project that monitors shoreline erosion using high-resolution imagery and examines erosion causes. Spatial modeling and analysis methods are applied to the project area along the south shore of Lake Erie. The shoreline is represented as a dynamically-segmented linear model that is linked to a large amount of data describing shoreline changes. A new method computes an instantaneous shoreline using a digital water level model, a coastal terrain model, and bathymetric data. This method provides an algorithm for deriving the Mean-Lower Low Water (MLLW) and the Mean High Water (MHW) shorelines that are essential to navigation charts. The results describe a part of our effort towards a coastal spatial information infrastructure to support management and decision-making in the dynamic coastal environment.  相似文献   
4.
The multivariate total least-squares (MTLS) approach aims at estimating a matrix of parameters, Ξ, from a linear model (YE Y = (XE X ) · Ξ) that includes an observation matrix, Y, another observation matrix, X, and matrices of randomly distributed errors, E Y and E X . Two special cases of the MTLS approach include the standard multivariate least-squares approach where only the observation matrix, Y, is perturbed by random errors and, on the other hand, the data least-squares approach where only the coefficient matrix X is affected by random errors. In a previous contribution, the authors derived an iterative algorithm to solve the MTLS problem by using the nonlinear Euler–Lagrange conditions. In this contribution, new lemmas are developed to analyze the iterative algorithm, modify it, and compare it with a new ‘closed form’ solution that is based on the singular-value decomposition. For an application, the total least-squares approach is used to estimate the affine transformation parameters that convert cadastral data from the old to the new Israeli datum. Technical aspects of this approach, such as scaling the data and fixing the columns in the coefficient matrix are investigated. This case study illuminates the issue of “symmetry” in the treatment of two sets of coordinates for identical point fields, a topic that had already been emphasized by Teunissen (1989, Festschrift to Torben Krarup, Geodetic Institute Bull no. 58, Copenhagen, Denmark, pp 335–342). The differences between the standard least-squares and the TLS approach are analyzed in terms of the estimated variance component and a first-order approximation of the dispersion matrix of the estimated parameters.  相似文献   
5.
6.
7.
8.
Correlations between photon currents from separate light-collectors provide information on the shape of the source. When the light-collectors are well separated, for example in space, transmission of these currents to a central correlator is limited by band-width. We study the possibility of compression of the photon fluxes and find that traditional compression methods have a similar chance of achieving this goal compared to compressed sensing.  相似文献   
9.
In experiments that are aimed at detecting astrophysical sources such as neutrino telescopes, one usually performs a search over a continuous parameter space (e.g. the angular coordinates of the sky, and possibly time), looking for the most significant deviation from the background hypothesis. Such a procedure inherently involves a “look elsewhere effect”, namely, the possibility for a signal-like fluctuation to appear anywhere within the search range. Correctly estimating the p-value of a given observation thus requires repeated simulations of the entire search, a procedure that may be prohibitively expansive in terms of CPU resources. Recent results from the theory of random fields provide powerful tools which may be used to alleviate this difficulty, in a wide range of applications. We review those results and discuss their implementation, with a detailed example applied for neutrino point source analysis in the IceCube experiment.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号