首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   1篇
  国内免费   1篇
测绘学   2篇
地球物理   13篇
地质学   20篇
天文学   30篇
自然地理   3篇
  2021年   1篇
  2018年   5篇
  2017年   5篇
  2014年   2篇
  2013年   5篇
  2012年   7篇
  2011年   4篇
  2010年   4篇
  2009年   5篇
  2008年   5篇
  2007年   5篇
  2006年   1篇
  2005年   5篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1984年   1篇
排序方式: 共有68条查询结果,搜索用时 140 毫秒
1.
The equilibrium in which hydrous Fe-cordierite breaks down to almandine, sillimanite, quartz, and water was previously experimentally determined by Richardson (1968) and Holdaway and Lee (1977) using QMF buffer and by Weisbrod (1973) using QIF buffer. All these studies yielded similar results — a negative dP/dT slope for the equilibrium curve. However, based on theoretical arguments, Martignole and Sisi (1981), and based on Fe-Mg partitioning experiments on coexisting cordierite and garnet in equilibrium with sillimanite and quartz, Aranovich and Podlesskii (1983) suggested that this equilibrium curve has a positive dP/dT slope and its position depends on the water content of the equilibrium cordierite. We have redetermined this equilibrium using a much improved tecnique of detecting reaction direction, and cordierite starting material that contained virtually no hercynite. Hercynite was present as a contaminant in the cordierites of previous experimental studies and possibly reacted with quartz during the experimental runs to expand the apparent stability field of Fe-cordierite. We synthesized Fe-cordierite from reagent grade oxides at 710°C and 2 kbar (using QMF buffer) with two intermediate stages of grinding and mixing. The cordierite has a unit cell volume of 1574.60 Å3 (molar volume=23.706 J/bar) and no Fe3+ as indicated by X-ray diffraction and room temperature Mössbauer studies respectively. Reaction direction was concluded by noting20% change of the ratios of intensities of two key X-ray diffraction peaks of cordierite and almandine. Our results show that the four-phase equilibrium curve passes through the points 2.1 kbar, 650°C and 2.5 kbar, 750°C. This disagrees with all previous experimental studies. H2O in the Fe-cordierite, equilibrated at 2.2 kbar and 700°C and determined by H-extraction line in the stable isotope laboratory, is 1.13 wt% (n=0.41 moles). H2O content of pure Mg-cordierite equilibrated under identical conditions and determined by thermogravimentric conditions and determined by thermogravimetric analysis is 1.22 wt% (n=0.40). Similar determinations on Fe-cordierite and Mg-cordierite equilibrated at 2.0 kbar and 650°C show 1.27 wt% (n=0.46) and 1.47 wt% (n=0.48) of H2O respectively. Thus, H2O content appears to be independent of Fe/Mg ratio in cordierite, a conclusion which supports previous experimental determinations. The experimentally determined equilibrium curve represents conditions of PH2O=Ptotal. From this we calculated the anhydrous curve representing equilibrium under conditions of X H2O V =0.0. A family of calculated equilibrium curves of constant n H2O Cord cut the experimentally determined curve at a very small angle indicating a slight variation in n H2O Cord in cordierite in equilibrium with almandine, sillimanite, and quartz under the conditions of constant X H2O V . Ancther set of calculated equilibrium curves, each representing constant a H2O V demonstrate that the slopes of the curves vary with X H2O V , and are all positive in the full range of 0.0X H2O V 1.0.  相似文献   
2.
Neoarchean orogenic gold deposits, associated with the greenstone-granite milieus in the Dharwar Craton include(1) the famous Kolar mine and the world class Hutti deposit;(2) small mines at HiraBuddini, Uti, Ajjanahalli, and Guddadarangavanahalli;(3) prospects at Jonnagiri; and(4) old mining camps in the Gadag and Ramagiri-Penakacherla belts. The existing diametric views on the source of ore fluid for formation of these deposits include fluids exsolved from granitic melts and extracted by metamorphic devolatilization of the greenstone sequences. Lode gold mineralization occurs in structurally controlled higher order splays in variety of host rocks such as mafic/felsic greenstones, banded iron formations, volcaniclastic rocks and granitoids. Estimated metamorphic conditions of the greenstones vary from lower greenschist facies to mid-amphibolite facies and mineralizations in all the camps are associated with distinct hydrothermal alterations. Fluid inclusion microthermometric and Raman spectroscopic studies document low salinity aqueous-gaseous(H_2O + CO_2 ± CH_4 + NaCl) ore fluids,which precipitated gold and altered the host rocks in a narrow P-T window of 0.7-2.5 kbar and 215-320℃. While the calculated fluid O-and C-isotopic values are ambiguous, S-isotopic compositions of pyrite-precipitating fluid show distinct craton-scale uniformity in terms of its reduced nature and a suggested crustal sulfur source.Available ages on greenstone metamorphism, granitoid plutonism and mineralization in the Hutti Belt are tantamount, making a geochronology-based resolution of the existing debate on the metamorphic vs.magmatic fluid source impossible. In contrast, tourmaline geochemistry suggests involvement of single fluid in formation of gold mineralization, primarily derived by metamorphic devolatilization of mafic greenstones and interlayered sedimentary rocks, with minor magmatic contributions. Similarly, compositions of scheelite, pyrite and arsenopyrite point toward operation of fault-valves that caused pressure fluctuation-induced fluid phase separation, which acted as the dominant process of gold precipitation,apart from fluid-rock sulfidation reactions. Therefore, results from geochemistry of hydrothermal minerals and those from fluid inclusion microthermometry corroborate in constraining source of ore fluid,nature of gold transport(by Au-bisulfide complex) and mechanism of gold ore formation in the Dharwar Craton.  相似文献   
3.
Liquidus phase relationships in the CaAlAl–SiO6–Mg2SiO4–CaMgSi2O6–CaAlSi2O8 portion of the simplified basalt tetrahedron in the CaO–MgO–SiO2–Al2O3 system have been experimentally determined at 20 kbar pressure. The fo+di ss+sp+li univariant curve, that pierces the fo-di-an join and meets the fo+di ss+ enss+sp+li invariant point in the basalt tetrahedron, extends all the way to and pierces the di-fo-CaTs join, the limit of the simplified basalt tetrahedron toward the silica undersaturated portion.An algebraic method, relying on compositions of two successive liquids on a univariant curve and those of the crystalline phases in equilibrium with the respective liquids, is developed to identify the type of reaction that takes place along an isobarically univariant curve and to detect whether there is a temperature maximum on that curve. Use of this method for the di ss+fo+sp+li univariant equilibria shows that a temperature maximum exists on this curve at the composition Fo11Di56An3CaTs30, very close to and slighthly to the SiO2-rich side of the fo-di-CaTs join. The temperature along the univariant curve continuously decreases from the temperature maximum (1500°C) to the invariant point (1475°C) where the univariant curve is terminated by the appearance of e ss as a member of the equilibrium assemblage. Along this part of the curve, a reaction relationship occurs according to the equation fo+li=di ss+ sp. Compositions of di ss in equilibrium with the liquids from the temperature maximum to the fo+di ss+enss+ sp+li invariant point range from Di66En9CaTs25 to Di36En40CaTs24. Because of the reaction relationship of forsterite with liquid, fractional crystallization of a model alkalic basaltic liquid would cause liquids to move off the fo-di ss-sp-li univariant curve onto the sp-di ss divariant surface. Crystallization of di ss and sp would then lead to silica enrichment of residual liquids. Thus at pressures below 30 kbar, at which pressure the Al2O3–CaSiO3–MgSiO3 plane becomes a new thermal divide cutting through both the tholeiitic and alkalic volumes, alkalic liquids will fractionate toward tholeiitic compositions without crossing a thermal divide. This relationship would be expected to persist at pressures down to about 4 kbar where a maximum on the fo-di-an-li boundary line causes a thermal divide near the fo-di-an plane. Strongly SiO2-undersaturated liquids (e.g. nephelinites, basanites), on the other hand, cannot be derived from SiO2-undersaturated basalts (e.g. alkali olivine basalt) by fractional crystallization at 20 kbar. We also found that no gt primary phase volume cuts the wo-en-Al2O3 join at 20 kbar pressure. The wehrlite, the olivine clinopyroxenite, and the Al-augite group lherzolite xenoliths, containing highly aluminous clinopyroxenes (enriched in Ca-Tschermak), can be interpreted as crystal cumulates from alkalic basalts in the light of this experimental study. This is consistent with the mode of origin of these xenoliths proposed from petrographic, mineralogic, and geochemical studies.Abbreviations and notations di CaMgSi2O6 - fo Mg2SiO4 - an CaAl2Si2O8 - CaTs CaAlAlSiO6 - sp MgAl2O4 - en MgSiO3 - wo CaSiO3 - gt Ca3Al2Si3O12–Mg3Al2Si3O12 - qz SiO2 - li Liquid - gl glass - ss Solid Solution - A An mxn matrix - X A column vector - kbar kilobar  相似文献   
4.
A wavelet‐based random vibration theory has been developed for the non‐stationary seismic response of liquid storage tanks including soil interaction. The ground motion process has been characterized via estimates of statistical functionals of wavelet coefficients obtained from a single time history of ground accelerations. The tank–liquid–soil system has been modelled as a two‐degree‐of‐freedom (2‐DOF) system. The wavelet domain equations have been formulated and the wavelet coefficients of the required response state are obtained by solving two linear simultaneous algebraic equations. The explicit expression for the instantaneous power spectral density function (PSDF) in terms of the functionals of the input wavelet coefficients has been obtained. The moments of this PSDF are used to estimate the expected pseudo‐spectral acceleration (PSA) response of the tank. Parametric variations are carried out to study the effects of tank height, foundation natural frequency, shear wave velocity of soil and ratio of the mass of tank (including liquid) to the mass of foundation on the PSA responses of tanks. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
5.
6.
The bedded felsic tuff exposed in Rutland Island, Andaman, consists of two facies:
–  white massive tuff with ill-defined bedding contacts (facies-A) and  相似文献   
7.
Application of geostatistics in estimating recoverable reserves of beach sand deposit is rare. This paper made an attempt to estimate local recoverable reserves using disjunctive kriging and discrete Gaussian model considering support and information effects for a beach sand deposit located in the eastern part of India. The dependence of different selective mining unit (SMU) sizes and different production sampling strategies on the estimated tonnage, metal quantity, and the ore tonnage versus metal quantity relationships has been examined. The results of the study show that nonlinear geostatistics should be used for more precise assessment of the grade, ore tonnage, and metal quantity and their relationships, which are necessary for recoverable reserve estimation. In selective mining operation, both support and information effects have significant influence on recoverable reserve. Recoverable reserve estimation based on SMU involves estimating grade distributions of mining unit with much bigger support than the available drill core sample data. Information effect comes into picture from the real scenario where the actual grades of the blocks remain unknown even during mining. At the mining stage, discrimination of ore and waste blocks is carried out based on estimated grades of the production samples and it is likely that the blocks might be misclassified as either ore or waste and thus sent to wrong destination. Information effect modeling makes the estimation more reliable by taking care of misclassification.  相似文献   
8.
9.
The effects of soil–structure interaction (SSI) while designing the liquid column damper (LCD) for seismic vibration control of structures have been presented in this study. The formulation for the input–output relation of a flexible‐base structure with attached LCD has been presented. The superstructure has been modelled by a single‐degree‐of‐freedom (SDOF) system. The non‐linearity in the orifice damping of the LCD has been replaced by equivalent linear viscous damping by using equivalent linearization technique. The force–deformation relationships and damping characteristics of the foundation have been described by complex valued impedance functions. Through a numerical stochastic study in the frequency domain, the various aspects of SSI on the functioning of the LCD have been illustrated. A simpler approach for studying the LCD performance considering SSI, using an equivalent SDOF model for the soil–structure system available in literature by Wolf (Dynamic Soil–Structure Interaction. International Series in Civil Engineering and Engineering Mechanics. Prentice‐Hall: Englewood Cliffs, NJ, 1985) has also been presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
10.
The nonlinear wave structures of ion acoustic waves (IAWs) in an unmagnetized plasma consisting of nonextensive electrons and thermal positrons are studied in bounded nonplanar geometry. Using reductive perturbation technique we have derived cylindrical and spherical Korteweg-de Vries-Burgers’ (KdVB) equations for IAWs. The presence of nonextensive q-distributed electrons is shown to influence the solitary and shock waves. Furthermore, in the existence of ion kinematic viscosity, the shock wave structure appears. Also, the effects of nonextensivity of electrons, ion kinematic viscosities, positron concentration on the properties of ion acoustic shock waves (IASWs) are discussed in nonplanar geometry. It is found that both compressive and rarefactive type solitons or shock waves are obtained depending on the plasma parameter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号