首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   1篇
大气科学   28篇
地球物理   8篇
地质学   3篇
海洋学   1篇
天文学   1篇
自然地理   2篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   5篇
  2014年   1篇
  2013年   10篇
  2012年   3篇
  2011年   2篇
  2010年   4篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   3篇
  2004年   5篇
  2003年   1篇
  1980年   1篇
排序方式: 共有43条查询结果,搜索用时 796 毫秒
1.
2.
The LMDZ4 general circulation model is the atmospheric component of the IPSL–CM4 coupled model which has been used to perform climate change simulations for the 4th IPCC assessment report. The main aspects of the model climatology (forced by observed sea surface temperature) are documented here, as well as the major improvements with respect to the previous versions, which mainly come form the parametrization of tropical convection. A methodology is proposed to help analyse the sensitivity of the tropical Hadley–Walker circulation to the parametrization of cumulus convection and clouds. The tropical circulation is characterized using scalar potentials associated with the horizontal wind and horizontal transport of geopotential (the Laplacian of which is proportional to the total vertical momentum in the atmospheric column). The effect of parametrized physics is analysed in a regime sorted framework using the vertical velocity at 500 hPa as a proxy for large scale vertical motion. Compared to Tiedtke’s convection scheme, used in previous versions, the Emanuel’s scheme improves the representation of the Hadley–Walker circulation, with a relatively stronger and deeper large scale vertical ascent over tropical continents, and suppresses the marked patterns of concentrated rainfall over oceans. Thanks to the regime sorted analyses, these differences are attributed to intrinsic differences in the vertical distribution of convective heating, and to the lack of self-inhibition by precipitating downdraughts in Tiedtke’s parametrization. Both the convection and cloud schemes are shown to control the relative importance of large scale convection over land and ocean, an important point for the behaviour of the coupled model.  相似文献   
3.
The simulation of the mean seasonal cycle of sea surface temperature (SST) remains a challenge for coupled ocean–atmosphere general circulation models (OAGCMs). Here we investigate how the numerical representation of clouds and convection affects the simulation of the seasonal variations of tropical SST. For this purpose, we compare simulations performed with two versions of the same OAGCM differing only by their convection and cloud schemes. Most of the atmospheric temperature and precipitation differences between the two simulations reflect differences found in atmosphere-alone simulations. They affect the ocean interior down to 1,000 m. Substantial differences are found between the two coupled simulations in the seasonal march of the Intertropical Convergence Zone in the eastern part of the Pacific and Atlantic basins, where the equatorial upwelling develops. The results confirm that the distribution of atmospheric convection between ocean and land during the American and African boreal summer monsoons plays a key role in maintaining a cross equatorial flow and a strong windstress along the equator, and thereby the equatorial upwelling. Feedbacks between convection, large-scale circulation, SST and clouds are highlighted from the differences between the two simulations. In one case, these feedbacks maintain the ITCZ in a quite realistic position, whereas in the other case the ITCZ is located too far south close to the equator.  相似文献   
4.
This study examines the feasibility of using a variable resolution global general circulation model (GCM), with telescopic zooming and enhanced resolution (~35 km) over South Asia, to better understand regional aspects of the South Asian monsoon rainfall distribution and the interactions between monsoon circulation and precipitation. For this purpose, two sets of ten member realizations are produced with and without zooming using the LMDZ (Laboratoire Meteorologie Dynamique and Z stands for zoom) GCM. The simulations without zoom correspond to a uniform 1° × 1° grid with the same total number of grid points as in the zoom version. So the grid of the zoomed simulations is finer inside the region of interest but coarser outside. The use of these finer and coarser resolution ensemble members allows us to examine the impact of resolution on the overall quality of the simulated regional monsoon fields. It is found that the monsoon simulation with high-resolution zooming greatly improves the representation of the southwesterly monsoon flow and the heavy precipitation along the narrow orography of the Western Ghats, the northeastern mountain slopes and northern Bay of Bengal (BOB). A realistic Monsoon Trough (MT) is also noticed in the zoomed simulation, together with remarkable improvements in representing the associated precipitation and circulation features, as well as the large-scale organization of meso-scale convective systems over the MT region. Additionally, a more reasonable simulation of the monsoon synoptic disturbances (lows and disturbances) along the MT is noted in the high-resolution zoomed simulation. On the other hand, the no-zoom version has limitations in capturing the depressions and their movement, so that the MT zone is relatively dry in this case. Overall, the results from this work demonstrate the usefulness of the high-resolution variable resolution LMDZ model in realistically capturing the interactions among the monsoon large-scale dynamics, the synoptic systems and the meso-scale convective systems, which are essential elements of the South Asian monsoon system.  相似文献   
5.
An overview of radiative climate feedbacks and ocean heat uptake efficiency diagnosed from idealized transient climate change experiments of 14 CMIP5 models is presented. Feedbacks explain about two times more variance in transient climate response across the models than ocean heat uptake efficiency. Cloud feedbacks can clearly be identified as the main source of inter-model spread. Models with strong longwave feedbacks in the tropics feature substantial increases in cloud ice around the tropopause suggestive of changes in cloud-top heights. The lifting of the tropical tropopause goes together with a general weakening of the tropical circulation. Distinctive inter-model differences in cloud shortwave feedbacks occur in the subtropics including the equatorward flanks of the storm-tracks. Related cloud fraction changes are not confined to low clouds but comprise middle level clouds as well. A reduction in relative humidity through the lower and mid troposphere can be identified as being the main associated large-scale feature. Experiments with prescribed sea surface temperatures are analyzed in order to investigate whether the diagnosed feedbacks from the transient climate simulations contain a tropospheric adjustment component that is not conveyed through the surface temperature response. The strengths of the climate feedbacks computed from atmosphere-only experiments with prescribed increases in sea surface temperatures, but fixed CO2 concentrations, are close to the ones derived from the transient experiment. Only the cloud shortwave feedback exhibits discernible differences which, however, can not unequivocally be attributed to tropospheric adjustment to CO2. Although for some models a tropospheric adjustment component is present in the global mean shortwave cloud feedback, an analysis of spatial patterns does not lend support to the view that cloud feedbacks are dominated by their tropospheric adjustment part. Nevertheless, there is positive correlation between the strength of tropospheric adjustment processes and cloud feedbacks across different climate models.  相似文献   
6.
This work reports the synthesis of ferri-clinoholmquistite, nominally Li2(Mg3Fe3+2)Si8O22(OH)2, at varying fO2 conditions. Amphibole compositions were characterized by X-ray (powder and single-crystal) diffraction, microchemical (EMPA) and spectroscopic (FTIR, Mössbauer and Raman) techniques. Under reducing conditions ( NNO+1, where NNO = Nickel–Nickel oxide buffer), the amphibole yield is very high (>90%), but its composition, and in particular the FeO/Fe2O3 ratio, departs significantly from the nominal one. Under oxidizing conditions ( NNO+1.5), the amphibole yield is much lower (<60%, with Li-pyroxene abundant), but its composition is close to the ideal stoichiometry. The exchange vector of relevance for the studied system is M2(Mg,Fe2+) M4(Mg,Fe2+) M2Fe3+–1 M4Li–1, which is still rather unexplored in natural systems. Amphibole crystals of suitable size for structure refinement were obtained only at 800 °C, 0.4 GPa and NNO conditions (sample 152), and have C2/m symmetry. The X-ray powder patterns for all other samples were indexed in the same symmetry; the amphibole closest to ideal composition has a = 9.428(1) Å, b = 17.878(3) Å, c = 5.282(1) Å, = 102.06(2)°, V = 870.8(3) Å3. Mössbauer spectra show that Fe3+ is strongly ordered at M2 in all samples, whereas Fe2+ is disordered over the B and C sites. FTIR analysis shows that the amount of CFe2+ increases for increasingly reducing conditions. FTIR data also provide strong evidence for slight but significant amounts of Li at the A sites.  相似文献   
7.
A hydrodynamic model of the Bay of Toulon has been developed for use as a post-accident radionuclide dispersion simulation tool. Located in a Mediterranean urban area, the Bay of Toulon is separated into two basins by a 1.4-km long seawall. The Little Bay is semi-enclosed and connected to the Large Bay by a fairway channel. This channel is the site of significant water mass exchange as a result of both wind-driven currents and bathymetry. It is therefore a focal point for marine contamination. As part of the model calibration and validation process, the first step consisted of studying the water mass exchange between the two basins. An Acoustic Doppler Current Profiler was moored in the channel for 1 year. The present study analyses in situ data to determine the current intensity and direction, and also to better understand the vertical current profile, which is highly correlated with meteorological forcing. Comparisons of model-generated and measured data are presented, and various atmospheric forcing datasets are used to enhance computed results. It appears that accurate meteorological forcing data is needed to enhance the accuracy of the hydrodynamic model. This channel is an important location for water mass renewal in the Bay of Toulon, and model results are used to quantify these exchanges. The mean calculated annual water exchange time is approximately 3.4 days. However, this duration is strongly wind dependent and shortens during windy winter months. It ranges from 1.5 days during strong wind periods to 7.5 days during calm weather. Residence time values calculated through tracer dispersion modelling after release at the back of the Little Bay are found to be comparable to the mean exchange time values, especially for windy conditions.  相似文献   
8.
In this study, we investigated the effects of cadmium chloride (CdCl2), mercury chloride (HgCl2), methylmercury chloride (CH3HgCl), and PCBs on lymphocyte proliferation in phocids. PBMCs isolated from harbour and grey seals were exposed in vitro to varying concentrations of contaminants. A reduction of viability occurred when cells were exposed to 10−4 M HgCl2 or CH3HgCl or to 50 ppm of Aroclor 1254. In both grey and harbour seals, T-lymphocyte proliferation was suppressed when their cells were incubated with 5 × 10−5 M CdCl2 or 10−4 M HgCl2. An inhibition of proliferation occurred with CH3HgCl from 10−6 M in grey seals and from 10−5 M in harbour seals. In grey seals, Aroclor 1254 reduced lymphocyte proliferation at 15 ppm. In both harbour and grey seals, CH3HgCl was ten times more immunotoxic that HgCl2. From IC50, chemicals were ranked in terms of toxicity as followed: CH3HgCl > CdCl2 > HgCl2 > Aroclor 1254.  相似文献   
9.
This paper reviews major findings of the Multidisciplinary Experimental and Modeling Impact Crater Research Network (MEMIN). MEMIN is a consortium, funded from 2009 till 2017 by the German Research Foundation, and is aimed at investigating impact cratering processes by experimental and modeling approaches. The vision of this network has been to comprehensively quantify impact processes by conducting a strictly controlled experimental campaign at the laboratory scale, together with a multidisciplinary analytical approach. Central to MEMIN has been the use of powerful two-stage light-gas accelerators capable of producing impact craters in the decimeter size range in solid rocks that allowed detailed spatial analyses of petrophysical, structural, and geochemical changes in target rocks and ejecta. In addition, explosive setups, membrane-driven diamond anvil cells, as well as laser irradiation and split Hopkinson pressure bar technologies have been used to study the response of minerals and rocks to shock and dynamic loading as well as high-temperature conditions. We used Seeberger sandstone, Taunus quartzite, Carrara marble, and Weibern tuff as major target rock types. In concert with the experiments we conducted mesoscale numerical simulations of shock wave propagation in heterogeneous rocks resolving the complex response of grains and pores to compressive, shear, and tensile loading and macroscale modeling of crater formation and fracturing. Major results comprise (1) projectile–target interaction, (2) various aspects of shock metamorphism with special focus on low shock pressures and effects of target porosity and water saturation, (3) crater morphologies and cratering efficiencies in various nonporous and porous lithologies, (4) in situ target damage, (5) ejecta dynamics, and (6) geophysical survey of experimental craters.  相似文献   
10.
On dynamic and thermodynamic components of cloud changes   总被引:1,自引:1,他引:1  
Clouds are sensitive to changes in both the large-scale circulation and the thermodynamic structure of the atmosphere. In the tropics, temperature changes that occur on seasonal to decadal time scales are often associated with circulation changes. Therefore, it is difficult to determine the part of cloud variations that results from a change in the dynamics from the part that may result from the temperature change itself. This study proposes a simple framework to unravel the dynamic and non-dynamic (referred to as thermodynamic) components of the cloud response to climate variations. It is used to analyze the contrasted response, to a prescribed ocean warming, of the tropically-averaged cloud radiative forcing (CRF) simulated by the ECMWF, LMD and UKMO climate models. In each model, the dynamic component largely dominates the CRF response at the regional scale, but this is the thermodynamic component that explains most of the average CRF response to the imposed perturbation. It is shown that this component strongly depends on the behaviour of the low-level clouds that occur in regions of moderate subsidence (e.g. in the trade wind regions). These clouds exhibit a moderate sensitivity to temperature changes, but this is mostly their huge statistical weight that explains their large influence on the tropical radiation budget. Several propositions are made for assessing the sensitivity of clouds to changes in temperature and in large-scale motions using satellite observations and meteorological analyses on the one hand, and mesoscale models on the other hand.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号