首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   3篇
大气科学   3篇
地球物理   10篇
地质学   1篇
自然地理   2篇
  2021年   2篇
  2019年   2篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2013年   1篇
  2010年   1篇
  2008年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
This data note introduces a database of long-term daily total precipitation and stream discharge data for seven forested watersheds in Japan that have been continuously monitored by the Forestry and Forest Products Research Institute. Three of the watersheds started data collection in the 1930s. Forest cover across the sites ranges from cool to warm temperate regions with the latitude spanning from 31 to 44° N and annual precipitation ranging from 1200 to 3000 mm yr−1. The effects of vegetation change via clearcutting, thinning and forest fire (among other stressors) on stream discharge can be analysed from the long-term observation sites. Moreover, this multi-site dataset allows for inter- and intra-site comparisons of annual water loss (difference of annual precipitation and stream discharge). These long-term datasets can provide comprehensive insights into the effects of climate change and other stressors on forested ecosystems, not only in Japan but across a spectrum of forest types, if combined with other long-term records from other forested watersheds across the world.  相似文献   
2.
ABSTRACT

Throughfall drop size distributions (DSDs) are important for plant–soil interactions. This is the first known study to quantify differences in throughfall DSDs with the presence and absence of foliage. Employing a disdrometer, three parameters solely representing throughfall drip were measured and calculated: maximum drop diameter (DMAX), median volume diameter of drops (D50DR) and relative volume percentage of drops (pDR). Beneath Liriodendron tulipifera L. in Maryland (USA), DMAX, D50DR and pDR were substantially larger when the canopy was unfoliated. In fact, the presence or absence of foliage was one of the primary factors affecting all three throughfall DSDs along with air temperature, according to the boosted regression tree analysis. Experimental results were attributed to differing physical properties of intercepted water between foliated and unfoliated periods and differential water behavior on leaves and bark. Future work should examine the effects of concentrated drip points on the development of throughfall-induced hot spots.
Editor M.C. Acreman; Associate editor F. Hattermann  相似文献   
3.
Numerous studies investigated the influence of abiotic (meteorological conditions) and biotic factors (tree characteristics) on stemflow generation. Although these studies identified the variables that influence stemflow volumes in simply structured forests, the combination of tree characteristics that allows a robust prediction of stemflow volumes in species‐rich forests is not well known. Many hydrological applications, however, require at least a rough estimate of stemflow volumes based on the characteristics of a forest stand. The need for robust predictions of stemflow motivated us to investigate the relationships between tree characteristics and stemflow volumes in a species‐rich tropical forest located in central Panama. Based on a sampling setup consisting of ten rainfall collectors, 300 throughfall samplers and 60 stemflow collectors and cumulated data comprising 26 rain events, we derive three main findings. Firstly, stemflow represents a minor hydrological component in the studied 1‐ha forest patch (1.0% of cumulated rainfall). Secondly, in the studied species‐rich forest, single tree characteristics are only weakly related to stemflow volumes. The influence of multiple tree parameters (e.g. crown diameter, presence of large epiphytes and inclination of branches) and the dependencies among these parameters require a multivariate approach to understand the generation of stemflow. Thirdly, predicting stemflow in species‐rich forests based on tree parameters is a difficult task. Although our best model can capture the variation in stemflow to some degree, a critical validation reveals that the model cannot provide robust predictions of stemflow. A reanalysis of data from previous studies in species‐rich forests corroborates this finding. Based on these results and considering that for most hydrological applications, stemflow is only one parameter among others to estimate, we advocate using the base model, i.e. the mean of the stemflow data, to quantify stemflow volumes for a given study area. Studies in species‐rich forests that wish to obtain predictions of stemflow based on tree parameters probably need to conduct a much more extensive sampling than currently implemented by most studies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
4.
Forest canopies present irregular surfaces that alter both the quantity and spatiotemporal variability of precipitation inputs. The drop size distribution (DSD) of rainfall varies with rainfall event characteristics and is altered substantially by the forest stand properties. Yet, the influence of two major European tree species, European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) H. Karst), on throughfall DSD is largely unknown. In order to assess the impact of these two species with differing canopy structures on throughfall DSD, two optical disdrometers, one above and one below the canopy of each European beech and Norway spruce, measured DSD of both incident rainfall and throughfall over 2 months at a 10‐s resolution. Fractions of different throughfall categories were analysed for single‐precipitation events of different intensities. While penetrating the canopies, clear shifts in drop size and temporal distributions of incoming rainfall were observed. Beech and spruce, however, had different DSD, behaved differently in their effect on diameter volume percentiles as well as width of drop spectrum. The maximum drop sizes under beech were higher than under spruce. The mean ± standard deviation of the median volume drops size (D50) over all rain events was 2.7 ± 0.28 mm for beech and 0.80 ± 0.04 mm for spruce, respectively. In general, there was a high‐DSD variability within events indicating varying amounts of the different throughfall fractions. These findings help to better understand the effects of different tree species on rainfall partitioning processes and small‐scale variations in subcanopy rainfall inputs, thereby demonstrating the need for further research in high‐resolution spatial and temporal properties of rainfall and throughfall.  相似文献   
5.
Stemflow leaching from the above‐ground vegetative surfaces of broadleaved deciduous canopy trees has been well documented during the growing season. Winter stemflow leaching from the leafless crowns of deciduous trees is less well understood, especially in the context of global climate change. Boreal and northern temperate forests are forecast to have a lower incidence of snow events and an increased frequency of rain and mixed precipitation events. A change in the seasonal precipitation regime may be significant due to linkages among global change, stemflow leaching, and biogeochemical processes. The aim of this paper is to (1) demonstrate the extent of winter stemflow nutrient leaching from deciduous trees; (2) explore how winter stemflow leachate quantity may vary as a function of the type of precipitation event; and (3) quantify the extent to which an increase in the incidence of snow‐to‐rain events would enhance stemflow leaching. Measuring meteorological conditions, stemflow volumes, and stemflow chemistry over two successive winter seasons in New England demonstrated that winter stemflow drainage was significantly enriched compared to the incident bulk precipitation: 162 times greater for K+, 44 times greater for Ca2+, and 29 times greater for Mg2+. Snow‐to‐rain events leached considerably greater quantities of base cations from the deciduous trees than all other types of precipitation events. An increased frequency of snow‐to‐rain events from 13.8% to 25% of winter precipitation events would substantially increase mean stemflow nutrient inputs to the bases of forest trees during winter. Implications for significantly increased winter stemflow leachate inputs, corresponding to an increased incidence of snow‐to‐rain events, include a shift in the biogeographic range of species, delayed leaf emergence, and increased soil respiration.  相似文献   
6.
Leaching is an important process in the biogeochemical cycling of nutrients from above‐ground vegetative surfaces to the forest floor. Little is known about winter leaching from deciduous tree species and the influence of branch inclination angle on leachate chemistry. Using a set of field‐based isolated branches harvested from mature crowns of Betula lenta, Carya glabra and Quercus rubra, we tested the null hypothesis that during winter neither branch inclination angle nor branch species would have a detectable influence on differences in leachate chemistry and the quantity of intercepted precipitation from the branch surface. Leachate concentrations were significantly greater from branches inclined at 20° than 5° or 38°. Absolute nutrient inputs were also greatest for branches inclined at 20°. The significantly enriched branchflow and greater total nutrient input from branches inclined at 20° were attributed to increased residence time of intercepted precipitation with the branch surface, the lower probability of branch drip than branches inclined at 5°, and only minimal differences in branchflow quantity compared with branches inclined at 38°. Branchflow was more enriched from all three branch angles during precipitation events of longer duration and lower intensity than shorter, intense events. The leachate quantities of K+ and Ca2+ differ significantly among species. Carya glabra and Quercus rubra leached more K+ than Betula lenta. All three species leached significantly different amounts of Ca2+, with Quercus rubra leaching the most and Carya glabra the least. The adaptive geometry of deciduous canopy trees should be considered in relation to the interception of precipitation and aqueous leaching during winter when the canopy is leafless. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
7.
Slushflows are natural hazards that pose considerable danger to communities across the globe. These events are characterized by the rapid mass movement of water-inundated snow downslope, and they cause economic damage as well as fatalities in many different climates and regions. As the global climate changes and human populations and industries potentially expand to higher latitudes, it will be important to fully understand the slushflow hazard since an anticipated increase in the frequency of rain-on-snow events and an earlier spring thaw would likely increase the probability of slushflows. This article: (1) summarizes the factors that favor the development of slushflows; (2) discusses the hazard management implications of slushflows; (3) examines the policies employed to prevent and mitigate slushflow damage; and (4) sets out the need for modifications in hazard management systems. Conclusions drawn hope to address future research needs in an effort to create policies that better suit the needs of at-risk communities.  相似文献   
8.
9.
Short‐lived fallout isotopes, such as beryllium‐7 (7Be), are increasingly used as erosion and sediment tracers in watersheds. 7Be is produced in the atmosphere and delivered to the Earth's surface primarily in precipitation. However, relatively little has been published about the variation in 7Be wet deposition caused by storm type and vegetation cover. Our analysis of precipitation, throughfall, and sediments in two forested, headwater catchments in the mid‐Atlantic USA indicates significant variation in isotope deposition with storm type and storm height. Individual summer convective thunderstorms were associated with 7Be activity concentrations up to 5.0 Bq l?1 in precipitation and 4.7 Bq l?1 in throughfall, while single‐event wet depositional fluxes reached 168 Bq m?2 in precipitation and 103 Bq m?2 in throughfall. Storms originating from the continental USA were associated with lower 7Be activity concentrations and single‐event wet depositional fluxes for precipitation (0.7–1.2 Bq l?1 and 15.8–65.0 Bq m?2) and throughfall (0.1–0.3 Bq l?1 and 13.5–98.9 Bq m?2). Tropical systems had relatively low activity concentrations, 0.2–0.5 Bq l?1 in precipitation and 0.2–1.0 Bq l?1 in throughfall, but relatively high single‐event depositional fluxes due to large rainfall volumes, 32.8–67.6 Bq m?2 in precipitation and 25.7–134 Bq m?2 in throughfall. The largest sources of 7Be depositional variation were attributed to storm characteristics including precipitation amount and maximum storm height. 7Be activity associated with fluvial suspended sediments also exhibited the highest concentration and variability in summer (175–1450 Bq kg?1). We conclude the dominant source of variation on event‐level 7Be deposition is storm type. Our results illustrate the complex relationships between 7Be deposition in precipitation and throughfall and demonstrate event‐scale relationships between the 7Be in precipitation and on suspended sediment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
10.
An increasing number of studies have examined the effects of various biotic and abiotic factors on stemflow production. Of those that have ascribed the importance of canopy structure to stemflow production, there has been a bias towards field studies. Coupling Bayesian inference with the NIED (National Research Institute for Earth Science and Disaster Resilience, Tsukuba, Japan) large-scale rainfall simulator, this study leveraged a unique opportunity to control rainfall amounts and intensities to pinpoint the canopy structural metrics that differentially influence stemflow funnelling ratios for three common tree species between leafed and leafless canopy states. For the first time, we examined whether canopy structure metrics exert a static control on stemflow funnelling ratios or whether different elements of canopy structure are more or less important under leafed or leafless states, thereby allowing us to determine if tacit assumptions about the static influence of canopy structure on stemflow production (and funnelling) are valid (or not). Rainfall simulations were conducted at 15, 20, 30, 40, 50, and 100 mm h−1 under both leafed and leafless tree conditions (12 simulations in total) to detect any differential effects on the presence or absence of foliage on stemflow funnelling ratios. For leafed conditions, the highest percentages of best-fitting models (ΔDIC ≤2) indicated that stemflow funnelling ratios were mainly controlled by total dry aboveground biomass (Ball), diameter at breast height (DBH), total dry foliar biomass (Bf), tree height (H), and woody to foliar dry biomass ratio (BR). Whilst for the leafless state, the highest percentages of best-fitting models (ΔDIC ≤2) indicated that total dry branch biomass (Bbr) was relatively dominant as was the interaction effects between crown projection area and species (CPA:species). These results compel us to reject any assumption of a static effect of different elements of canopy structure on stemflow funnelling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号