首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   2篇
测绘学   1篇
大气科学   11篇
地球物理   11篇
地质学   25篇
海洋学   9篇
天文学   3篇
自然地理   14篇
  2022年   1篇
  2021年   3篇
  2019年   2篇
  2018年   4篇
  2017年   5篇
  2016年   3篇
  2015年   4篇
  2014年   1篇
  2013年   8篇
  2012年   3篇
  2011年   9篇
  2010年   3篇
  2009年   5篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  2000年   2篇
  1998年   2篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
排序方式: 共有74条查询结果,搜索用时 15 毫秒
1.
Iron (hydr)oxides not only serve as potent sorbents and repositories for nutrients and contaminants but also provide a terminal electron acceptor for microbial respiration. The microbial reduction of Fe (hydr)oxides and the subsequent secondary solid-phase transformations will, therefore, have a profound influence on the biogeochemical cycling of Fe as well as associated metals. Here we elucidate the pathways and mechanisms of secondary mineralization during dissimilatory iron reduction by a common iron-reducing bacterium, Shewanella putrefaciens (strain CN32), of 2-line ferrihydrite under advective flow conditions. Secondary mineralization of ferrihydrite occurs via a coupled, biotic-abiotic pathway primarily resulting in the production of magnetite and goethite with minor amounts of green rust. Operating mineralization pathways are driven by competing abiotic reactions of bacterially generated ferrous iron with the ferrihydrite surface. Subsequent to the initial sorption of ferrous iron on ferrihydrite, goethite (via dissolution/reprecipitation) and/or magnetite (via solid-state conversion) precipitation ensues resulting in the spatial coupling of both goethite and magnetite with the ferrihydrite surface. The distribution of goethite and magnetite within the column is dictated, in large part, by flow-induced ferrous Fe profiles. While goethite precipitation occurs over a large Fe(II) concentration range, magnetite accumulation is only observed at concentrations exceeding 0.3 mmol/L (equivalent to 0.5 mmol Fe[II]/g ferrihydrite) following 16 d of reaction. Consequently, transport-regulated ferrous Fe profiles result in a progression of magnetite levels downgradient within the column. Declining microbial reduction over time results in lower Fe(II) concentrations and a subsequent shift in magnetite precipitation mechanisms from nucleation to crystal growth. While the initial precipitation rate of goethite exceeds that of magnetite, continued growth is inhibited by magnetite formation, potentially a result of lower Fe(III) activity. Conversely, the presence of lower initial Fe(II) concentrations followed by higher concentrations promotes goethite accumulation and inhibits magnetite precipitation even when Fe(II) concentrations later increase, thus revealing the importance of both the rate of Fe(II) generation and flow-induced Fe(II) profiles. As such, the operating secondary mineralization pathways following reductive dissolution of ferrihydrite at a given pH are governed principally by flow-regulated Fe(II) concentration, which drives mineral precipitation kinetics and selection of competing mineral pathways.  相似文献   
2.
3.

Kimberlites are rare volatile-rich ultramafic magmas thought to erupt in short periods of time (<1 Myr) but there is a growing body of evidence that the emplacement history of a kimberlite can be significantly more protracted. In this study we report a detailed geochronology investigation of a single kimberlite pipe from the Renard cluster in north-central Québec. Ten new high precision ID-TIMS (isotope dilution – thermal ionization mass spectrometry) U-Pb groundmass perovskite dates from the main pipe-infilling kimberlites and several small hypabyssal kimberlites from the Renard 2 pipe indicate kimberlite magmatism lasted at least ~20 Myr. Two samples of the main pipe-infilling kimberlites yield identical weighted mean 206Pb/238U perovskite dates with a composite date of 643.8 ± 1.0 Myr, interpreted to be the best estimate for main pipe emplacement. In contrast, six hypabyssal kimberlite samples yielded a range of weighted mean 206Pb/238U perovskite dates between ~652-632 Myr. Multiple dates determined from these early-, syn- and late-stage small hypabyssal kimberlites in the Renard 2 pipe demonstrate this rock type (commonly used to date kimberlites) help to constrain the duration of kimberlite intrusion history within a pipe but do not necessarily reliably record the emplacement age of the main diatreme in the Renard cluster. Our results provide the first robust geochronological data on a single kimberlite that confirms the field relationships initially observed by Wagner (1914) and Clement (1982); the presence of antecedent (diatreme precursor) intrusions, contemporaneous (syn-diatreme) intrusions, and consequent (post-diatreme) cross-cutting intrusions. The results of this detailed U-Pb geochronology study indicate a single kimberlite pipe can record millions of years of magmatism, much longer than previously thought from the classical viewpoint of a rapid and short-duration emplacement history.

  相似文献   
4.
Concentration data for as many as 72 constituents in the four Canadian Certified Reference Materials Project (CCRMP) soil samples have been collected from journal articles and technical reports published since these soil standards were issued in 1978. These data are summarized into mean +/- one standard deviation values and compared with available certification data from CCRMP. All literature data located or calculated are presented in the appendices.  相似文献   
5.
Elemental composition data on eight older (AGV-1, BCR-1, DTS-1, G-1, G-2, GSP-1, PCC-1 and W-1) and three newer (BIR-1, DNC-1 and W-2) USGS rock standards have been collected from institutional reports and journal articles from 1972–1981. This collection was combined with data from previous compilations and "consensus values" for up to 79 elements determined by comparing overall means, medians, and individual means based on analytical techniques.  相似文献   
6.
Geochemical profiles of sediment cores from two oligotrophic lakes (Elk and Mullett) in northern Lower Michigan were studied to examine the response and recovery of watersheds to large-scale logging that occurred between 1850 and 1920. Specific questions addressed were: can the impact of extensive clear-cutting of forests be recognized in the sediment-chemical chronologies, can states of system stability be identified prior to the logging, and are there indications that the systems are recovering and possibly returning to a stable state? To answer these questions, elements were put into four groups as proxies for watershed runoff or export (e.g., Al, Mg), pollution (e.g., Pb, Cu), redox (e.g., Fe, As), and productivity (e.g., Ca, P). It was observed that vertical patterns of all proxies were influenced by logging and the early increases in concentration of pollution proxies were due to increased watershed export, not pollution. System stability might be recognized by relatively symmetrical vertical patterns among all of the proxies or secular changes of slowly increasing or decreasing vertical concentration trajectories. Some pre-logging trajectories were punctuated by episodes of slightly elevated concentrations that appear to be related to comparatively warmer periods during the Little Ice Age. Iron and Mn enrichments caused by increased watershed runoff might be misinterpreted as paleo-redox horizons. Results are interpreted to indicate that (1) reference conditions may be better defined as the temporal trends among proxy groups and not individual concentrations, (2) simply assuming pre-1800 conditions as a reference may not be appropriate, (3) inter-proxy group comparisons are needed to help for interpretations of intra-proxy group patterns, (4) the possible regime shift identified here might be expected for other ecosystems because of the intensity of human disturbances and secular changes, and (5) without consideration of a possible regime shift, recovery from logging is estimated to be on the order of 75–130 a, but shorter if regime shifts are considered.  相似文献   
7.
Palaeoecology, as an ecological discipline, is able to provide relevant inputs for conservation science and ecosystem management, especially for issues involving long-term processes, such as ecological succession, migration, adaptation, microevolution, and extinction. This use of palaeoecology has been noted for several decades, and it has become widely accepted, especially in the frame of ongoing and near-future global warming and its potential biotic consequences. Selected palaeoecological insights of interest for conservation include the following: 1) species respond in an individualistic manner to environmental changes that lead to changes in community composition, suggesting that future ecosystems would have no modern analogues; 2) in the short-term, acclimation is more likely a response of species that are expected to persist in the face of global warming, but the possibility of evolutionary change linked to the existence of pre-adapted genomes cannot be dismissed; 3) species unable to acclimate or adapt to new conditions should migrate or become extinct, which has been observed in past records; 4) current extinction estimates for the near-future should be revised in light of palaeoecological information, which shows that spatial reorganisations and persistence in suitable microrefugia have been more common than extinction during the Quaternary; 5) biotic responses to environmental changes do not necessarily follow the rules of equilibrium dynamics but depend on complex and non-linear processes that lead to unexpected “surprises”, which are favoured by the occurrence of thresholds and amplifying positive feedbacks; 6) threshold responses can cause the movement of ecosystems among several potentially stable states depending on their resilience, or the persistence of transient states; 7) species and their communities have responded to environmental changes in a heterogeneous fashion according to the local and regional features, which is crucial for present and future management policies; 8) the global warming that occurred at the end of the Younger Drays cold reversal (ca 13.0 to 11.5 cal kyr BP) took place at similar rates and magnitudes compared to the global warming projected for the 21st century, thus becoming a powerful past analogue for prediction modelling; 9) environmental changes have acted upon ecosystems in an indirect way by modifying human behaviour and activities that, in turn, have had the potential of changing the environment and enhancing the disturbance effects by synergistic processes involving positive feedbacks; 10) the collapse of past civilisations under climate stress has been chiefly the result of inadequate management procedures and weaknesses in social organisation, which would be a warning for the present uncontrolled growth of human population, the consequent overexploitation of natural resources, and the continuous increase of greenhouse gas emissions; 11) the impact of fire as a decisive ecological agent has increased since the rise of humans, especially during the last millennia, but anthropic fires were not dominant over natural fires until the 19th century; 12) fire has been an essential element in the development and ecological dynamics of many ecosystems, and it has significantly affected the worldwide biome distribution; 13) climate–fire–human synergies that amplify the effects of climate, or fire alone, have been important in the shaping of modern landscapes. These general paleoecological observations and others that have emerged from case studies of particular problems can improve the preservation of biodiversity and ecosystem functions. Nature conservation requires the full consideration of palaeoecological knowledge in an ecological context, along with the synergistic cooperation of palaeoecologists with neoecologists, anthropologists, and conservation scientists.  相似文献   
8.
9.
Hydrocarbons are being introduced into the marine environment from a variety of sources including combustion processes, crude oil spills, fuel oil spills, and controlled disposal such as processed ballast water. Even in the relatively clean waters of Alaska hydrocarbons are being released at an alarming rate. The purpose of this study was to determine the optimum conditions for the metabolism of a representative hydrocarbon by Coho Salmon Oncorhynchus kisutch liver microsomes. The product of cyclohexane metabolism in the salmon microsomal system was identified by gas chromatography-mass spectrometry as cyclohexanol. Conditions of the microsome incubation were varied systematically to determine the optimum temperature, pH, and ionic strength for cyclohexanol production. Cyclohexanol was quantified by capillary column gas chromatography. Maximum cyclohexanol formation was achieved at 20°C, a pH of 8·0–8·5 and an ionic strength of 0·026. A linear rate of cyclohexanol formation is seen from 0–60 min of incubation and there is an apparent decrease in the rate from 60–90 min. Poor stability of the microsomal preparation from the species studied was also identified and several stability studies have been undertaken using cyclohexane metabolism as a monitor.  相似文献   
10.
The Blue Ridge escarpment, located within the southern Appalachian Mountains of Virginia and North Carolina, forms a distinct, steep boundary between the lower‐elevation Piedmont and higher‐elevation Blue Ridge physiographic provinces. To understand better the rate at which this landform and the adjacent landscape are changing, we measured cosmogenic beryllium‐10 (10Be) in quartz separated from sediment samples (n = 50) collected in 32 streams and from three exposed bedrock outcrops along four transects normal to the escarpment, allowing us to calculate erosion rates integrated over 104–105 years. These basin‐averaged erosion rates (5.4–49 m Myr?1) are consistent with those measured elsewhere in the southern Appalachain Mountains and show a positive relationship between erosion rate and average basin slope. Erosion rates show no relationship with basin size or relative position of the Brevard fault zone, a fundamental structural element of the region. The cosmogenic isotopic data, when considered along with the distribution of average basin slopes in each physiographic province, suggest that the escarpment is eroding on average more rapidly than the Blue Ridge uplands, which are eroding more rapidly than the Piedmont lowlands. This difference in erosion rates by geomorphic setting suggests that the elevation difference between the uplands and lowlands adjacent to the escarpment is being reduced but at extremely slow rates. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号