首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180016篇
  免费   24156篇
  国内免费   46660篇
测绘学   6905篇
大气科学   34408篇
地球物理   42789篇
地质学   87593篇
海洋学   29291篇
天文学   29863篇
综合类   7157篇
自然地理   12826篇
  2022年   1957篇
  2021年   2837篇
  2020年   4036篇
  2019年   7481篇
  2018年   9329篇
  2017年   8902篇
  2016年   10040篇
  2015年   7721篇
  2014年   8766篇
  2013年   12565篇
  2012年   9057篇
  2011年   10013篇
  2010年   9504篇
  2009年   10402篇
  2008年   8899篇
  2007年   8644篇
  2006年   8028篇
  2005年   7040篇
  2004年   7186篇
  2003年   6664篇
  2002年   6192篇
  2001年   5598篇
  2000年   5298篇
  1999年   5343篇
  1998年   5113篇
  1997年   5130篇
  1996年   4344篇
  1995年   4043篇
  1994年   3677篇
  1993年   3376篇
  1992年   3003篇
  1991年   2564篇
  1990年   2532篇
  1989年   2236篇
  1988年   2049篇
  1987年   2122篇
  1986年   1849篇
  1985年   2093篇
  1984年   2331篇
  1983年   2071篇
  1982年   2009篇
  1981年   1806篇
  1980年   1599篇
  1979年   1525篇
  1978年   1514篇
  1977年   1329篇
  1976年   1262篇
  1975年   1189篇
  1974年   1165篇
  1973年   1208篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
1.
The groundwater divide is a key feature of river basins and significantly influenced by subsurface hydrological processes. For an unconfined aquifer between two parallel rivers or ditches, it has long been defined as the top of the water table based on the Dupuit–Forchheimer approximation. However, the exact groundwater divide is subject to the interface between two local flow systems transporting groundwater to rivers from the infiltration recharge. This study contributes a new analytical model for two-dimensional groundwater flow between rivers of different water levels. The flownet is delineated in the model to identify groundwater flow systems and the exact groundwater divide. Formulas with two dimensionless parameters are derived to determine the distributed hydraulic head, the top of the water table and the groundwater divide. The locations of the groundwater divide and the top of the water table are not the same. The distance between them in horizontal can reach up to 8.9% of the distance between rivers. Numerical verifications indicate that simplifications in the analytical model do not significantly cause misestimates in the location of the groundwater divide. In contrast, the Dupuit–Forchheimer approximation yields an incorrect water table shape. The new analytical model is applied to investigate groundwater divides in the Loess Plateau, China, with a Monte Carlo simulation process taking into account the uncertainties in the parameters.  相似文献   
2.
The Bear Brook Watershed in Maine (BBWM) is a long-term research site established to study the response of forest ecosystem function to environmental disturbances of chronic acidic deposition and ecosystem nitrogen enrichment. Starting in 1989, the West Bear (treated) watershed received bimonthly applications of ammonium sulfate [(NH4)2SO4] fertilizer from above the canopy, whereas East Bear (reference) received ambient deposition. The treatments were stopped in 2016, marking the beginning of the recovery phase. Research at the site has focused on soils, streams, and vegetation. Here, we describe data collected over three decades at the BBWM—input and stream output nutrient fluxes, quantitative soil pits and soil chemistry, and soil temperature and moisture.  相似文献   
3.
Few long-term studies have explored how intensively managed short rotation forest plantations interact with climate variability. We examine how prolonged severe drought and forest operations affect runoff in 11 experimental catchments on private corporate forest land near Nacimiento in south central Chile over the period 2008–2019. The catchments (7.7–414 ha) contain forest plantations of exotic fast-growing species (Pinus radiata, Eucalyptus spp.) at various stages of growth in a Mediterranean climate (mean long-term annual rainfall = 1381 mm). Since 2010, a drought, unprecedented in recent history, has reduced rainfall at Nacimiento by 20%, relative to the long-term mean. Pre-drought runoff ratios were <0.2 under 8-year-old Eucalyptus; >0.4 under 21-year-old Radiata pine and >0.8 where herbicide treatments had controlled vegetation for 2 years in 38% of the catchment area. Early in the study period, clearcutting of Radiata pine (85%–95% of catchment area) increased streamflow by 150 mm as compared with the year before harvest, while clearcutting and partial cuts of Eucalyptus did not increase streamflow. During 2008–2019, the combination of emerging drought and forestry treatments (replanting with Eucalyptus after clearcutting of Radiata pine and Eucalyptus) reduced streamflow by 400–500 mm, and regeneration of previously herbicide-treated vegetation combined with growth of Eucalyptus plantations reduced streamflow by 1125 mm (87% of mean annual precipitation 2010–2019). These results from one of the most comprehensive forest catchment studies in the world on private industrial forest land indicate that multiple decades of forest management have reduced deep soil moisture reservoirs. This effect has been exacerbated by drought and conversion from Radiata pine to Eucalyptus, apparently largely eliminating subsurface supply to streamflow. The findings reveal tradeoffs between wood production and water supply, provide lessons for adapting forest management to the projected future drier climate in Chile, and underscore the need for continued experimental work in managed forest plantations.  相似文献   
4.
In snowmelt-driven mountain watersheds, the hydrologic connectivity between meteoric waters and stream flow generation varies strongly with the season, reflecting variable connection to soil and groundwater storage within the watershed. This variable connectivity regulates how streamflow generation mechanisms transform the seasonal and elevational variation in oxygen and hydrogen isotopic composition (δ18O and δD) of meteoric precipitation. Thus, water isotopes in stream flow can signal immediate connectivity or more prolonged mixing, especially in high-relief mountainous catchments. We characterized δ18O and δD values in stream water along an elevational gradient in a mountain headwater catchment in southwestern Montana. Stream water isotopic compositions related most strongly to elevation between February and March, exhibiting higher δ18O and δD values with decreasing elevation. These elevational isotopic lapse rates likely reflect increased connection between stream flow and proximal snow-derived water sources heavily subject to elevational isotopic effects. These patterns disappeared during summer sampling, when consistently lower δ18O and δD values of stream water reflected contributions from snowmelt or colder rainfall, despite much higher δ18O and δD values expected in warmer seasonal rainfall. The consistently low isotopic values and absence of a trend with elevation during summer suggest lower connectivity between summer precipitation and stream flow generation as a consequence of drier soils and greater transpiration. As further evidence of intermittent seasonal connectivity between the stream and adjacent groundwaters, we observed a late-winter flush of nitrate into the stream at higher elevations, consistent with increased connection to accumulating mineralized nitrogen in riparian wetlands. This pattern was distinct from mid-summer patterns of nitrate loading at lower elevations that suggested heightened human recreational activity along the stream corridor. These observations provide insights linking stream flow generation and seasonal water storage in high elevation mountainous watersheds. Greater understanding of the connections between surface water, soil water and groundwater in these environments will help predict how the quality and quantity of mountain runoff will respond to changing climate and allow better informed water management decisions.  相似文献   
5.
Average velocity in streams is a key variable for the analysis and modelling of hydrological and hydraulic processes underpinning water resources science and practice. The present study evaluates the impact of the sampling duration on the quality of average velocity measurements acquired with contemporary instruments such as Acoustic Doppler Velocimeters (ADV) an Acoustic Doppler Current Profilers (ADCP). The evaluation combines considerations on turbulent flows and principles and configurations of acoustic instruments with practical experience in conducting customized analysis for uncertainty analysis purposes. The study sheds new insights on the spatial and temporal variability of the uncertainty in the measurement of average velocities due to variable sampling durations acting in isolation from other sources of uncertainties. Sampling durations of 90 and 150 s are found sufficient for ADV and ADCP, respectively, to obtain reliable average velocities in a flow affected only by natural turbulence and instrument noise. Larger sampling durations are needed for measurements in most of the natural streams exposed to additional sources of data variability.  相似文献   
6.
Glaciers and snow cover are important constituents of the surface of the Tibetan Plateau. The responses of these phenomena to global environmental changes are sensitive, rapid and intensive due to the high altitudes and arid cold climate of the Tibetan Plateau. Based on multisource remote sensing data, including Landsat images, MOD10A2 snow product, ICESat, Cryosat-2 altimetry data and long-term ground climate observations, we analysed the dynamic changes of glaciers, snow melting and lake in the Paiku Co basin using extraction methods for glaciers and lake, the degree-day model and the ice and lake volume method. The interaction among the climate, ice-snow and the hydrological elements in Paiku Co is revealed. From 2000 to 2018, the basin tended to be drier, and rainfall decreased at a rate of −3.07 mm/a. The seasonal temperature difference in the basin increased, the maximum temperature increased at a rate of 0.02°C/a and the minimum temperature decreased at a rate of −0.06°C/a, which accelerated the melting from glaciers and snow at rates of 0.55 × 107 m3/a and 0.29 × 107 m3/a, respectively. The rate of contribution to the lake from rainfall, snow and glacier melted water was 55.6, 27.7 and 16.7%, respectively. In the past 18 years, the warmer and drier climate has caused the lake to shrink. The water level of the lake continued to decline at a rate of −0.02 m/a, and the lake water volume decreased by 4.85 × 108 m3 at a rate of −0.27 × 108 m3/a from 2000 to 2018. This evaluation is important for understanding how the snow and ice melting in the central Himalayas affect the regional water cycle.  相似文献   
7.
A FORTRAN program, consistent with the commercially available finite element (FE) code ABAQUS, is developed based on a three-dimensional (3D) linear elastic brittle damage constitutive model with two damage criteria. To consider the heterogeneity of rock, the developed FORTRAN program is used to set the stiffness and strength properties of each element of the FE model following a Weibull distribution function. The reliability of the program is assessed against available experimental results for granite cylindrical specimens with a throughgoing, flat and inclined fissure. The calibration procedure of the material parameters is explained in detail, and it is shown that the compressive to tensile strength ratio can have a substantial influence on the failure response of the specimens. Numerical simulations are conducted for models with different levels of heterogeneity. The results show a smaller load bearing capacity for models with less homogeneity, representing gradual coalescence of fully damaged elements forming throughout the models during loading. The maximum load bearing capacity is studied for various combinations of inclination angles of two centrally aligned, throughgoing and flat fissures of equal length embedded in cylindrical models under uniaxial and multiaxial loading conditions. The key role of the compressive to tensile strength ratio is highlighted by repeating certain simulations with a lower compressive to tensile strength ratio. It is proven that the peak loads of the rock models with sufficiently small compressive to tensile strength ratios containing two throughgoing fissures of equal length are similar, provided that the minimum inclination angles of the models are the same. The results are presented and discussed with respect to the existing experimental findings in the literature, suggesting that the numerical model applied in this study can provide useful insight into the failure behaviour of rock-like materials.  相似文献   
8.
The variability of rainfall-dependent streamflow at catchment scale modulates many ecosystem processes in wet temperate forests. Runoff in small mountain catchments is characterized by a quick response to rainfall pulses which affects biogeochemical fluxes to all downstream systems. In wet-temperate climates, water erosion is the most important natural factor driving downstream soil and nutrient losses from upland ecosystems. Most hydrochemical studies have focused on water flux measurements at hourly scales, along with weekly or monthly samples for water chemistry. Here, we assessed how water and element flows from broad-leaved, evergreen forested catchments in southwestern South America, are influenced by different successional stages, quantifying runoff, sediment transport and nutrient fluxes during hourly rainfall events of different intensities. Hydrograph comparisons among different successional stages indicated that forested catchments differed in their responses to high intensity rainfall, with greater runoff in areas covered by secondary forests (SF), compared to old-growth forest cover (OG) and dense scrub vegetation (CH). Further, throughfall water was greatly nutrient enriched for all forest types. Suspended sediment loads varied between successional stages. SF catchments exported 455 kg of sediments per ha, followed by OG with 91 kg/ha and CH with 14 kg/ha, corresponding to 11 rainfall events measured from December 2013 to April 2014. Total nitrogen (TN) and phosphorus (TP) concentrations in stream water also varied with rainfall intensity. In seven rainfall events sampled during the study period, CH catchments exported less nutrients (46 kg/ha TN and 7 kg/ha TP) than SF catchments (718 kg/ha TN and 107 kg/ha TP), while OG catchments exported intermediate sediment loads (201 kg/ha TN and 23 kg/ha TP). Further, we found significant effects of successional stage attributes (vegetation structure and soil physical properties) and catchment morphometry on runoff and sediment concentrations, and greater nutrients retention in OG and CH catchments. We conclude that in these southern hemisphere, broad-leaved evergreen temperate forests, hydrological processes are driven by multiple interacting phenomena, including climate, vegetation, soils, topography, and disturbance history.  相似文献   
9.
Wetlands represent one of the world's most biodiverse and threatened ecosystem types and were diminished globally by about two‐thirds in the 20th century. There is continuing decline in wetland quantity and function due to infilling and other human activities. In addition, with climate change, warmer temperatures and changes in precipitation and evapotranspiration are reducing wetland surface and groundwater supplies, further altering wetland hydrology and vegetation. There is a need to automate inventory and monitoring of wetlands, and as a study system, we investigated the Shepard Slough wetlands complex, which includes numerous wetlands in urban, suburban, and agricultural zones in the prairie pothole region of southern Alberta, Canada. Here, wetlands are generally confined to depressions in the undulating terrain, challenging wetlands inventory and monitoring. This study applied threshold and frequency analysis routines for high‐resolution, single‐polarization (HH) RADARSAT‐2, synthetic aperture radar mapping. This enabled a growing season surface water extent hyroperiod‐based wetland classification, which can support water and wetland resource monitoring. This 3‐year study demonstrated synthetic aperture radar‐derived multitemporal open‐water masks provided an effective index of wetland permanence class, with overall accuracies of 89% to 95% compared with optical validation data, and RMSE between 0.2 and 0.7 m between model and field validation data. This allowed for characterizing the distribution and dynamics of 4 marsh wetlands hydroperiod classes, temporary, seasonal, semipermanent, and permanent, and mapping of the sequential vegetation bands that included emergent, obligate wetland, facultative wetland, and upland plant communities. Hydroperiod variation and surface water extent were found to be influenced by short‐term rainfall events in both wet and dry years. Seasonal hydroperiods in wetlands were particularly variable if there was a decrease in the temporary or semipermanent hydroperiod classes. In years with extreme rain events, the temporary wetlands especially increased relative to longer lasting wetlands (84% in 2015 with significant rainfall events, compared with 42% otherwise).  相似文献   
10.
This work provides a comprehensive physically based framework for the interpretation of the north Australian rainfall stable isotope record (δ18O and δ2H). Until now, interpretations mainly relied on statistical relationships between rainfall amount and isotopic values on monthly timescales. Here, we use multiseason daily rainfall stable isotope and high resolution (10 min) ground‐based C‐band polarimetric radar data and show that the five weather types (monsoon regimes) that constitute the Australian wet season each have a characteristic isotope ratio. The data suggest that this is not only due to changes in regional rainfall amount during these regimes but, more importantly, is due to different rain and cloud types that are associated with the large scale circulation regimes. Negative (positive) isotope anomalies occurred when stratiform rainfall fractions were large (small) and the horizontal extent of raining areas were largest (smallest). Intense, yet isolated, convective conditions were associated with enriched isotope values whereas more depleted isotope values were observed when convection was widespread but less intense. This means that isotopic proxy records may record the frequency of which these typical wet season regimes occur. Positive anomalies in paleoclimatic records are most likely associated with periods where continental convection dominates and convection is sea‐breeze forced. Negative anomalies may be interpreted as periods when the monsoon trough is active, convection is of the oceanic type, less electric, and stratiform areas are wide spread. This connection between variability of rainfall isotope anomalies and the intrinsic properties of convection and its large‐scale environment has important implications for all fields of research that use rainfall stable isotopes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号