首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   7篇
  国内免费   1篇
测绘学   7篇
大气科学   9篇
地球物理   34篇
地质学   13篇
海洋学   22篇
天文学   1篇
综合类   4篇
自然地理   2篇
  2020年   4篇
  2019年   1篇
  2018年   3篇
  2017年   9篇
  2016年   5篇
  2015年   3篇
  2014年   5篇
  2013年   3篇
  2012年   7篇
  2011年   6篇
  2010年   10篇
  2009年   8篇
  2008年   7篇
  2007年   5篇
  2005年   7篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  1996年   1篇
  1993年   1篇
  1990年   1篇
排序方式: 共有92条查询结果,搜索用时 15 毫秒
1.
This paper deals with the problem of detecting and correcting cycle-slips in Global Navigation Satellite System (GNSS) phase data by exploiting the Bayesian theory. The method is here applied to undifferenced observations, because repairing cycle-slips already at this stage could be a useful pre-processing tool, especially for a network of permanent GNSS stations. If a dual frequency receiver is available, the cycle-slips can be easily detected by combining two phase observations or phase and range observations from a single satellite to a single receiver. These combinations, expressed in a distance unit form, are completely free from the geometry and depend only on the ionospheric effect, on the electronic biases and on the initial integer ambiguities; since these terms are expected to be smooth in time, at least in a short period, a cycle-slip in one or both the two carriers can be modelled as a discontinuity in a polynomial regression. The proposed method consists in applying the Bayesian theory to compute the marginal posterior distribution of the discontinuity epoch and to detect it as a maximum a posteriori (MAP) in a very accurate way. Concerning the cycle-slip correction, a couple of simultaneous integer slips in the two carriers is chosen by maximazing the conditional posterior distribution of the discontinuity amplitude given the detected epoch. Numerical experiments on simulated and real data show that the discontinuities with an amplitude 2 or 3 times larger than the noise standard deviation are successfully identified. This means that the Bayesian approach is able to detect and correct cycle-slips using undifferenced GNSS observations even if the slip occurs by one cycle. A comparison with the scientific software BERNESE 5.0 confirms the good performance of the proposed method, especially when data sampled at high frequency (e.g. every 1 s or every 5 s) are available.  相似文献   
2.
3.
4.
Real-time cycle slip detection in triple-frequency GNSS   总被引:7,自引:2,他引:5  
The modernization of the global positioning system and the advent of the European project Galileo will lead to a multifrequency global navigation satellite system (GNSS). The presence of new frequencies introduces more degrees of freedom in the GNSS data combination. We define linear combinations of GNSS observations with the aim to detect and correct cycle slips in real time. In particular, the detection is based on five geometry-free linear combinations used in three cascading steps. Most of the jumps are detected in the first step using three minimum-noise combinations of phase and code observations. The remaining jumps with very small amplitude are detected in the other two steps by means of two-tailored linear combinations of phase observations. Once the epoch of the slip has been detected, its amplitude is estimated using other linear combinations of phase observations. These combinations are defined with the aim of discriminating between the possible combinations of jump amplitudes in the three carriers. The method has been tested on simulated data and 1-second triple-frequency undifferenced GPS data coming from a friendly multipath environment. Results show that the proposed method is able to detect and repair all combinations of cycle slips in the three carriers.  相似文献   
5.
Understanding the effects of elevation and related factors (climate, vegetation) on the physical and chemical soil properties can help to predict changes in response to future climate or afforestation forcings. This work aims to contribute to the knowledge of soil evolution and the classification of forest soils in relation to elevation in the montane stage, with special attention to podzolization and humus forms. The northern flank of the Moncayo Massif (Iberian Range, SW Europe) provides a unique opportunity to study a forest soils catena within a consistent quartzitic parent material over a relatively steep elevation gradient. With increasing elevation, pH, base saturation, exchangeable potassium, and fine silt-sized particles decrease significantly, while organic matter, the C/N ratio, soil aggregate stability, water repellency and coarse sand-sized particles increase significantly. The soil profiles shared a set of properties in all horizons: loamy-skeletal particle-size, extreme acidity (pH-H2O<5.6) and low base saturation (<50%). The most prevalent soil forming processes in the catena include topsoil organic matter accumulation and even podzolization, which increases with elevation. From the upper to lower landscape positions of wooded montane stage of the Moncayo Massif, mull-moder-mor humus and an Umbrisol-Cambisol-Podzol soil unit sequences were found.  相似文献   
6.
Eleven-year long time series of monthly beach profile surveys and hourly incident wave conditions are analyzed for a macrotidal Low Tide Terrace beach. The lower intertidal zone of the beach has a pluriannual cycle, whereas the upper beach profile has a predominantly seasonal cycle. An equilibrium model is applied to study the variation of the contour elevation positions in the intertidal zone as a function of the wave energy, wave power, and water level. When forcing the model with wave energy, the predictive ability of the equilibrium model is around 60% in the upper intertidal zone but decreases to 40% in the lower intertidal zone. Using wave power increases the predictive ability up to 70% in both the upper and lower intertidal zones. However, changes around the inflection point are not well predicted. The equilibrium model is then extended to take into account the effects of the tide level. The initial results do not show an increase in the predictive capacity of the model, but do allow the model free parameters to represent more accurately the values expected in a macrotidal environment. This allows comparing the empirical model calibration in different tidal environment. The interpretation of the model free parameter variation across the intertidal zone highlights the behavior of the different zones along the intertidal beach profile. This contributes to a global interpretation of the four model parameters for beaches with different tidal ranges, and therefore to a global model applicable at a wide variety sites.  相似文献   
7.
The upper portion of the meadows of the protected Mediterranean seagrass Posidonia oceanica occurs in the region of the seafloor mostly affected by surf-related effects. Evaluation of its status is part of monitoring programs, but proper conclusions are difficult to draw due to the lack of definite reference conditions. Comparing the position of the meadow upper limit with the beach morphodynamics (i.e. the distinctive type of beach produced by topography and wave climate) provided evidence that the natural landwards extension of meadows can be predicted. An innovative model was therefore developed in order to locate the region of the seafloor where the meadow upper limit should lie in natural conditions (i.e. those governed only by hydrodynamics, in absence of significant anthropogenic impact). This predictive model was validated in additional sites, which showed perfect agreement between predictions and observations. This makes the model a valuable tool for coastal management.  相似文献   
8.
A land data assimilation system (LDAS) can merge satellite observations (or retrievals) of land surface hydrological conditions, including soil moisture, snow, and terrestrial water storage (TWS), into a numerical model of land surface processes. In theory, the output from such a system is superior to estimates based on the observations or the model alone, thereby enhancing our ability to understand, monitor, and predict key elements of the terrestrial water cycle. In practice, however, satellite observations do not correspond directly to the water cycle variables of interest. The present paper addresses various aspects of this seeming mismatch using examples drawn from recent research with the ensemble-based NASA GEOS-5 LDAS. These aspects include (1) the assimilation of coarse-scale observations into higher-resolution land surface models, (2) the partitioning of satellite observations (such as TWS retrievals) into their constituent water cycle components, (3) the forward modeling of microwave brightness temperatures over land for radiance-based soil moisture and snow assimilation, and (4) the selection of the most relevant types of observations for the analysis of a specific water cycle variable that is not observed (such as root zone soil moisture). The solution to these challenges involves the careful construction of an observation operator that maps from the land surface model variables of interest to the space of the assimilated observations.  相似文献   
9.
The Maldives was severely hit by massive coral bleaching and subsequent mortality in 1998. The results of reef monitoring in the following years have supported contrasting views about their recovery potential, partly because of the scarcity of information on the situation before 1998. Quantitative data on coral assemblages collected in 1993 in the Rasfari region (North Malé Atoll) may provide a base-line for the evaluation of the present status of the Maldivian reefs. Five years before the 1998 mortality, most coral communities appeared to be similar, in terms of both coral cover and growth-form composition, to those described in 1958 and 1964, notwithstanding increased human pressure and local events such as minor bleaching episodes in 1987 and crown-of-thorns starfish (COTS) attacks in 1989. Three lessons can be learnt from these results to help to understand the present situation, some ten years after the 1998 mass mortality. First, Maldivian reefs proved in the past to be capable of maintaining flourishing coral life despite various disturbances. Second, four years had been sufficient for complete reef recovery after a (minor) bleaching event. Third, recovery after both COTS attack and bleaching follows a predictable path suggesting that the presence of a three-dimensional community structure, which should reduce post settlement mortality of coral recruits, is essential for rapid coral recovery. As coral recruitment remains high and large tabular Acropora colonies are now reappearing, it is expected that Maldivian reefs should return to their original condition within the next few years.  相似文献   
10.
Primary production in the Bering and Chukchi Seas is strongly influenced by the annual cycle of sea ice. Here pelagic and sea ice algal ecosystems coexist and interact with each other. Ecosystem modeling of sea ice associated phytoplankton blooms has been understudied compared to open water ecosystem model applications. This study introduces a general coupled ice-ocean ecosystem model with equations and parameters for 1-D and 3-D applications that is based on 1-D coupled ice-ocean ecosystem model development in the landfast ice in the Chukchi Sea and marginal ice zone of Bering Sea. The biological model includes both pelagic and sea ice algal habitats with 10 compartments: three phytoplankton (pelagic diatom, flagellates and ice algae: D, F, and Ai) , three zooplankton (copepods, large zooplankton, and microzooplankton : ZS, ZL, ZP) , three nutrients ( nitrate + nitrite, ammonium, silicon : NO3 , NH4, Si) and detritus (Det). The coupling of the biological models with physical ocean models is straightforward with just the addition of the advection and diffusion terms to the ecosystem model. The coupling with a multi-category sea ice model requires the same calculation of the sea ice ecosystem model in each ice thickness category and the redistribution between categories caused by both dynamic and thermodynamic forcing as in the physical model. Phytoplankton and ice algal self-shading effect is the sole feedback from the ecosystem model to the physical model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号