首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2632篇
  免费   157篇
  国内免费   33篇
测绘学   109篇
大气科学   229篇
地球物理   604篇
地质学   982篇
海洋学   223篇
天文学   401篇
综合类   13篇
自然地理   261篇
  2023年   15篇
  2022年   23篇
  2021年   64篇
  2020年   89篇
  2019年   74篇
  2018年   90篇
  2017年   108篇
  2016年   130篇
  2015年   94篇
  2014年   116篇
  2013年   165篇
  2012年   127篇
  2011年   173篇
  2010年   148篇
  2009年   153篇
  2008年   136篇
  2007年   99篇
  2006年   95篇
  2005年   97篇
  2004年   82篇
  2003年   80篇
  2002年   66篇
  2001年   50篇
  2000年   44篇
  1999年   32篇
  1998年   25篇
  1997年   30篇
  1996年   30篇
  1995年   28篇
  1994年   14篇
  1993年   16篇
  1992年   21篇
  1991年   18篇
  1990年   22篇
  1989年   12篇
  1988年   13篇
  1987年   18篇
  1986年   6篇
  1985年   21篇
  1984年   26篇
  1983年   18篇
  1982年   19篇
  1981年   22篇
  1980年   13篇
  1979年   8篇
  1978年   12篇
  1977年   13篇
  1976年   10篇
  1975年   14篇
  1974年   16篇
排序方式: 共有2822条查询结果,搜索用时 19 毫秒
1.
The interplay of eustatic and isostatic factors causes complex relative sea‐level (RSL) histories, particularly in paraglacial settings. In this context the past record of RSL is important in understanding ice‐sheet history, earth rheology and resulting glacio‐isostatic adjustment. Field data to develop sea‐level reconstructions are often limited to shallow depths and uncertainty exists as to the veracity of modelled sea‐level curves. We use seismic stratigraphy, 39 vibrocores and 26 radiocarbon dates to investigate the deglacial history of Belfast Lough, Northern Ireland, and reconstruct past RSL. A typical sequence of till, glacimarine and Holocene sediments is preserved. Two sea‐level lowstands (both max. ?40 m) are recorded at c. 13.5 and 11.5k cal a bp . Each is followed by a rapid transgression and subsequent periods of RSL stability. The first transgression coincides temporally with a late stage of Meltwater Pulse 1a and the RSL stability occurred between c. 13.0 and c. 12.2k cal a bp (Younger Dryas). The second still/slowstand occurred between c. 10.3 and c. 11.5k cal a bp . Our data provide constraints on the direction and timing of RSL change during deglaciation. Application of the Depth of Closure concept adds an error term to sea‐level reconstructions based on seismic stratigraphic reconstructions.  相似文献   
2.
Although Late Cambrian microbial build-ups were recognized in the Point Peak Member of the Wilberns Formation in Central Texas (USA) nearly 70 years ago, only a few studies focused specifically on the build-ups themselves. This study focuses on the interpretation of the regional (15 measured sections described in literature representing an area of 8000 km2) and local (field and drone photogrammetry studies in a 25 km2 area from within south Mason County) microbial build-up occurrence, describes their growth phases and details their interactions with the surrounding inter-build-up sediments. The study establishes the occurrence of microbial build-ups in the lower and upper Point Peak members (the Point Peak Member is informally broken up into the lower Point Peak and the upper Point Peak members separated by Plectotrophia zone). The lower Point Peak Member consists of three <1 m thick microbial bioherms and biostrome units, in addition to heterolithic and skeletal/ooid grainstone and packstone beds. One, up to 14 m thick, microbial unit associated with inter-build-up skeletal and ooid grainstone and packstone beds, intercalated with mixed siliciclastic–carbonate silt beds, characterizes the upper Point Peak member. The microbial unit in the upper Point Peak member displays a three-phase growth evolution, from an initial colonization phase on flat based, rip-up clast lenses, to a second aggradation and lateral expansion phase, into a third well-defined capping phase. The ultimate demise of the microbial build-ups is interpreted to have been triggered by an increase of water turbidity caused by a sudden influx of fine siliciclastics. The lower Point Peak member represents inner ramp shallow subtidal and intertidal facies and the upper Point Peak member corresponds to mid-outer ramp subtidal facies. Understanding the morphological architecture and depositional context of these features is of importance for identifying signatures of early life on Earth.  相似文献   
3.
Pinos  Juan  Orellana  Daniel  Timbe  Luis 《Natural Hazards》2020,103(2):2323-2337
Natural Hazards - To reduce and prevent significant economic flood losses, reliable tools are required to estimate potential river inundation effects. This paper focuses on the estimation of direct...  相似文献   
4.
Exhumed basin margin‐scale clinothems provide important archives for understanding process interactions and reconstructing the physiography of sedimentary basins. However, studies of coeval shelf through slope to basin‐floor deposits are rarely documented, mainly due to outcrop or subsurface dataset limitations. Unit G from the Laingsburg depocentre (Karoo Basin, South Africa) is a rare example of a complete basin margin scale clinothem (>60 km long, 200 m‐high), with >10 km of depositional strike control, which allows a quasi‐3D study of a preserved shelf‐slope‐basin floor transition over a ca. 1,200 km2 area. Sand‐prone, wave‐influenced topset deposits close to the shelf‐edge rollover zone can be physically mapped down dip for ca. 10 km as they thicken and transition into heterolithic foreset/slope deposits. These deposits progressively fine and thin over tens of km farther down dip into sand‐starved bottomset/basin‐floor deposits. Only a few km along strike, the coeval foreset/slope deposits are bypass‐dominated with incisional features interpreted as minor slope conduits/gullies. The margin here is steeper, more channelized and records a stepped profile with evidence of sand‐filled intraslope topography, a preserved base‐of‐slope transition zone and sand‐rich bottomset/basin‐floor deposits. Unit G is interpreted as part of a composite depositional sequence that records a change in basin margin style from an underlying incised slope with large sand‐rich basin‐floor fans to an overlying accretion‐dominated shelf with limited sand supply to the slope and basin floor. The change in margin style is accompanied with decreased clinoform height/slope and increased shelf width. This is interpreted to reflect a transition in subsidence style from regional sag, driven by dynamic topography/inherited basement configuration, to early foreland basin flexural loading. Results of this study caution against reconstructing basin margin successions from partial datasets without accounting for temporal and spatial physiographic changes, with potential implications on predictive basin evolution models.  相似文献   
5.
The estimation of hydrologic transit times in a catchment provides insights into the integrated effects of water storage, mixing dynamics, and runoff generation processes. There has been limited effort to estimate transit times in southern boreal Precambrian Shield landscapes, which are characteristically heterogeneous with surface cover including till, thin soils, bedrock outcrops, and depressional wetland features that play contrasting hydrologic roles. This study presents approximately 3.5 years of precipitation and streamflow water isotope data and estimates mean transit times (MTTs) and the young water fraction (py) across six small catchments in the Muskoka-Haliburton region of south-central Ontario. The main objectives were to define a typical range of MTTs for headwater catchments in this region and to identify landscape variables that best explain differences in MTTs/py using airborne light detection and ranging and digital terrain analysis. Of the transit time distributions, the two parallel linear reservoir and gamma distributions best describe the hydrology of these catchments, particularly because of their ability to capture more extreme changes related to events such as snowmelt. The estimated MTTs, regardless of the modelling approach or distribution used, are positively associated with the percent wetland area and negatively with mean slope in the catchments. In this landscape, low-gradient features such as wetlands increase catchment scale water storage when antecedent conditions are dryer and decrease transit times when there is a moisture surplus, which plausibly explains the increases in MTTs and mean annual runoff from catchments with significant coverage of these landscape features.  相似文献   
6.
Reverse geocoding, which transforms machine‐readable GPS coordinates into human‐readable location information, is widely used in a variety of location‐based services and analysis. The output quality of reverse geocoding is critical because it can greatly impact these services provided to end‐users. We argue that the output of reverse geocoding should be spatially close to and topologically correct with respect to the input coordinates, contain multiple suggestions ranked by a uniform standard, and incorporate GPS uncertainties. However, existing reverse geocoding systems often fail to fulfill these aims. To further improve the reverse geocoding process, we propose a probabilistic framework that includes: (1) a new workflow that can adapt all existing address models and unitizes distance and topology relations among retrieved reference data for candidate selections; (2) an advanced scoring mechanism that quantifies characteristics of the entire workflow and orders candidates according to their likelihood of being the best candidate; and (3) a novel algorithm that derives statistical surfaces for input GPS uncertainties and propagates such uncertainties into final output lists. The efficiency of the proposed approaches is demonstrated through comparisons to the four commercial reverse geocoding systems and through human judgments. We envision that more advanced reverse geocoding output ranking algorithms specific to different application scenarios can be built upon this work.  相似文献   
7.
Various network model creation algorithms have been introduced to demonstrate a better approximation of the actual walking pattern and to provide a better wayfinding guide. However, it is under‐investigated which algorithm creates the most appropriate indoor navigation network model in the context of wayfinding applications. Due to the lack of discussion, some studies unconsciously extended an algorithm designed for creating an outdoor navigation network model to indoor space applications. This is problematic because indoor space has different spatial contexts from outdoor space, such as non‐linear space and no‐designated walking space. Our solution is to select five well‐known algorithms that have been introduced, to reproduce the algorithm for the automated construction of the indoor navigation network model, and to evaluate the applicability of algorithms for indoor wayfinding applications. This article compares the quality of wayfinding results from the output of the indoor navigation network model against two criteria: route efficiency (i.e., length) and route simplicity (i.e., number of directions). Our statistical analysis illustrates that the visibility graph algorithm is the most appropriate for indoor wayfinding applications.  相似文献   
8.
The monitoring of turbidity currents enables accurate internal structure and timing of these flows to be understood. Without monitoring, triggers of turbidity currents often remain hypothetical and are inferred from sedimentary structures of deposits and their age. In this study, the bottom currents within 20 m of the seabed in one of the Pointe-des-Monts (Gulf of St. Lawrence, eastern Canada) submarine canyons were monitored for two consecutive years using Acoustic Doppler Current Profilers. In addition, multibeam bathymetric surveys were carried out during deployment of the Acoustic Doppler Current Profilers and recovery operations. These new surveys, along with previous multibeam surveys carried out over the last decade, revealed that crescentic bedforms have migrated upslope by about 20 to 40 m since 2007, despite the limited supply of sediment on the shelf or river inflow in the region. During the winter of 2017, two turbidity currents with velocities reaching 0·5 m sec−1 and 2·0 m sec−1, respectively, were recorded and were responsible for the rapid (<1 min) upstream migration of crescentic bedforms measured between the autumn surveys of 2016 and 2017. The 200 kg (in water) mooring was also displaced 10 m down-canyon, up the stoss side of a bedform, suggesting that a dense basal layer could be driving the flow during the first minute of the event. Two other weaker turbidity currents with speeds <0·5 m sec−1 occurred, but did not lead to any significant change on the seabed. These four turbidity currents coincided with strong and sustained wind speed >60 km h−1 and higher than normal wave heights. Repeat seabed mapping suggests that the turbidity currents cannot be attributed to a canyon-wall slope failure. Rather, sustained windstorms triggered turbidity currents either by remobilizing limited volumes of sediment on the shelf or by resuspending sediment in the canyon head. Turbidity currents can thus be triggered when the sediment volume available is limited, likely by eroding and incorporating canyon thalweg sediment in the flow, thereby igniting the flow. This process appears to be particularly important for the generation of turbidity currents capable of eroding the lee side of upslope migrating bedforms in sediment-starved environments and might have wider implications for the activity of submarine canyons worldwide. In addition, this study suggests that a large external trigger (in this case storms) is required to initiate turbidity currents in sediment-starved environments, which contrasts with supply-dominated environments where turbidity currents are sometimes recorded without a clear triggering mechanism.  相似文献   
9.
The Sheep Mountain‐Little Sheep Mountain Anticlines, Bighorn Basin (USA) formed as basement‐cored Laramide structures in the formerly undeformed foreland of the thin‐skinned Sevier orogen. We take advantage of the well‐constrained microstructural network there to reconstruct differential stress magnitudes that prevailed during both Sevier and Laramide layer‐parallel shortening (LPS), before the onset of large‐scale folding. Differential stress magnitudes determined from tectonic stylolites are compared and combined to previous stress estimates from calcite twinning paleopiezometry in the same formations. During stress loading related to LPS, differential stress magnitudes transmitted from the distant Sevier thin‐skinned orogen into the sedimentary cover of the Bighorn basin (11–43 MPa) are higher than the differential stress magnitudes accompanying the early stage of LPS related to the thick‐skinned Laramide deformation (2–19 MPa). This study illustrates that the tectonic style of an orogen affects the transmission of early orogenic stress into the stable continental interior.  相似文献   
10.
The 2 to 5 km thick, sandstone-dominated (>90%) Jura Quartzite is an extreme example of a mature Neoproterozoic sandstone, previously interpreted as a tide-influenced shelf deposit and herein re-interpreted within a fluvio-tidal deltaic depositional model. Three issues are addressed: (i) evidence for the re-interpretation from tidal shelf to tidal delta; (ii) reasons for vertical facies uniformity; and (iii) sand supply mechanisms to form thick tidal-shelf sandstones. The predominant facies (compound cross-bedded, coarse-grained sandstones) represents the lower parts of metres to tens of metres high, transverse fluvio-tidal bedforms with superimposed smaller bedforms. Ubiquitous erosional surfaces, some with granule–pebble lags, record erosion of the upper parts of those bedforms. There was selective preservation of the higher energy, topographically-lower, parts of channel-bar systems. Strongly asymmetrical, bimodal, palaeocurrents are interpreted as due to associated selective preservation of fluvially-enhanced ebb tidal currents. Finer-grained facies are scarce, due largely to suspended sediment bypass. They record deposition in lower-energy environments, including channel mouth bars, between and down depositional-dip of higher energy fluvio-ebb tidal bars. The lack of wave-formed sedimentary structures and low continuity of mudstone and sandstone interbeds, support deposition in a non-shelf setting. Hence, a sand-rich, fluvial–tidal, current-dominated, largely sub-tidal, delta setting is proposed. This new interpretation avoids the problem of transporting large amounts of coarse sand to a shelf. Facies uniformity and vertical stacking are likely due to sediment oversupply and bypass rather than balanced sediment supply and subsidence rates. However, facies evidence of relative sea level changes is difficult to recognise, which is attributed to: (i) the areally extensive and polygenetic nature of the preserved facies, and (ii) a large stored sediment buffer that dampened response to relative sea-level and/or sediment supply changes. Consideration of preservation bias towards high-energy deposits may be more generally relevant, especially to thick Neoproterozoic and Lower Palaeozoic marine sandstones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号