首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   882篇
  免费   36篇
  国内免费   20篇
测绘学   8篇
大气科学   125篇
地球物理   192篇
地质学   366篇
海洋学   36篇
天文学   182篇
综合类   5篇
自然地理   24篇
  2021年   13篇
  2020年   13篇
  2019年   11篇
  2018年   13篇
  2017年   14篇
  2016年   23篇
  2015年   27篇
  2014年   29篇
  2013年   44篇
  2012年   41篇
  2011年   43篇
  2010年   35篇
  2009年   44篇
  2008年   48篇
  2007年   31篇
  2006年   36篇
  2005年   38篇
  2004年   31篇
  2003年   24篇
  2002年   28篇
  2001年   18篇
  2000年   22篇
  1999年   18篇
  1998年   14篇
  1997年   7篇
  1996年   13篇
  1995年   11篇
  1994年   14篇
  1993年   10篇
  1992年   8篇
  1991年   17篇
  1990年   8篇
  1989年   6篇
  1988年   10篇
  1987年   7篇
  1986年   6篇
  1985年   6篇
  1984年   11篇
  1983年   13篇
  1981年   17篇
  1980年   12篇
  1979年   6篇
  1978年   12篇
  1977年   8篇
  1976年   13篇
  1975年   7篇
  1974年   6篇
  1973年   10篇
  1972年   6篇
  1960年   4篇
排序方式: 共有938条查询结果,搜索用时 46 毫秒
1.
A Pleistocene travertine quarrying on a hill in Siwaqa area, central Jordan, excavated solid, well-stratified travertine beds of about 12 m in thickness. The fabric and composition of the travertine indicate original deposition from hot spring water. At present, the area and its surrounding are devoid of any perennial water, except for periodic flood flows that collect at Siwaqa dam 4–5 km to the west of the quarry area, joining the catchment of the River Mujib. The travertine overlies combusted oil shale. The exposed hot spring travertine consists predominantly of well-bedded limestone, interrupted by horizons of chaotic angular debris, indicating ejection from below such as those produced by geysers. The article discusses the origins of the mottled and angular rock fragments, their transportation due to explosive geyser, the conditions and possible causes that produced the pressures leading to steam outbreaks and are responsible for the observed redistribution of travertine layers.  相似文献   
2.
3.
A new natural rutile reference material is presented, suitable for U‐Pb dating and Zr‐in‐rutile thermometry by microbeam methods. U‐Pb dating of rutile R632 using laser ablation ICP‐MS with both magnetic sector field and quadrupole instruments as well as isotope dilution‐thermal ionisation mass spectrometry yielded a concordia age of 496 ± 2 Ma. The high U content (> 300 μg g?1) enabled measurement of high‐precision U‐Pb ages despite its young age. The sample was found to have a Zr content of 4294 ± 196 μg g?1, which makes it an excellent complementary reference material for Zr‐in‐rutile thermometry. Individual rutile grains have homogeneous compositions of a number of other trace elements including V, Cr, Fe, Nb, Mo, Sn, Sb, Hf, Ta and W. This newly characterised material significantly expands the range of available rutile reference materials relevant for age and temperature determinations.  相似文献   
4.
Mathematical Geosciences - Geological facies modeling is a key component in exploration and characterization of subsurface reservoirs. While traditional geostatistical approaches are still commonly...  相似文献   
5.
Ali  Sajid  Haider  Rashid  Abbas  Wahid  Basharat  Muhammad  Reicherter  Klaus 《Natural Hazards》2021,106(3):2437-2460
Natural Hazards - The Karakoram Highway links north Pakistan with southwest China. It passes through unique geomorphological, geological and tectonic setting. This study focused 200-km-long section...  相似文献   
6.

Many geological phenomena are regularly measured over time to follow developments and changes. For many of these phenomena, the absolute values are not of interest, but rather the relative information, which means that the data are compositional time series. Thus, the serial nature and the compositional geometry should be considered when analyzing the data. Multivariate time series are already challenging, especially if they are higher dimensional, and latent variable models are a popular way to deal with this kind of data. Blind source separation techniques are well-established latent factor models for time series, with many variants covering quite different time series models. Here, several such methods and their assumptions are reviewed, and it is shown how they can be applied to high-dimensional compositional time series. Also, a novel blind source separation method is suggested which is quite flexible regarding the assumptions of the latent time series. The methodology is illustrated using simulations and in an application to light absorbance data from water samples taken from a small stream in Lower Austria.

  相似文献   
7.
8.
9.
This paper reviews major findings of the Multidisciplinary Experimental and Modeling Impact Crater Research Network (MEMIN). MEMIN is a consortium, funded from 2009 till 2017 by the German Research Foundation, and is aimed at investigating impact cratering processes by experimental and modeling approaches. The vision of this network has been to comprehensively quantify impact processes by conducting a strictly controlled experimental campaign at the laboratory scale, together with a multidisciplinary analytical approach. Central to MEMIN has been the use of powerful two-stage light-gas accelerators capable of producing impact craters in the decimeter size range in solid rocks that allowed detailed spatial analyses of petrophysical, structural, and geochemical changes in target rocks and ejecta. In addition, explosive setups, membrane-driven diamond anvil cells, as well as laser irradiation and split Hopkinson pressure bar technologies have been used to study the response of minerals and rocks to shock and dynamic loading as well as high-temperature conditions. We used Seeberger sandstone, Taunus quartzite, Carrara marble, and Weibern tuff as major target rock types. In concert with the experiments we conducted mesoscale numerical simulations of shock wave propagation in heterogeneous rocks resolving the complex response of grains and pores to compressive, shear, and tensile loading and macroscale modeling of crater formation and fracturing. Major results comprise (1) projectile–target interaction, (2) various aspects of shock metamorphism with special focus on low shock pressures and effects of target porosity and water saturation, (3) crater morphologies and cratering efficiencies in various nonporous and porous lithologies, (4) in situ target damage, (5) ejecta dynamics, and (6) geophysical survey of experimental craters.  相似文献   
10.
Numerical modeling has now become an indispensable tool for investigating the fundamental mechanisms of toxic nonaqueous phase liquid (NAPL) removal from contaminated groundwater systems. Because the domain of a contaminated groundwater system may involve irregular shapes in geometry, it is necessary to use general quadrilateral elements, in which two neighbor sides are no longer perpendicular to each other. This can cause numerical errors on the computational simulation results due to mesh discretization effect. After the dimensionless governing equations of NAPL dissolution problems are briefly described, the propagation theory of the mesh discretization error associated with a NAPL dissolution system is first presented for a rectangular domain and then extended to a trapezoidal domain. This leads to the establishment of the finger‐amplitude growing theory that is associated with both the corner effect that takes place just at the entrance of the flow in a trapezoidal domain and the mesh discretization effect that occurs in the whole NAPL dissolution system of the trapezoidal domain. This theory can be used to make the approximate error estimation of the corresponding computational simulation results. The related theoretical analysis and numerical results have demonstrated the following: (1) both the corner effect and the mesh discretization effect can be quantitatively viewed as a kind of small perturbation, which can grow in unstable NAPL dissolution systems, so that they can have some considerable effects on the computational results of such systems; (2) the proposed finger‐amplitude growing theory associated with the corner effect at the entrance of a trapezoidal domain is useful for correctly explaining why the finger at either the top or bottom boundary grows much faster than that within the interior of the trapezoidal domain; (3) the proposed finger‐amplitude growing theory associated with the mesh discretization error in the NAPL dissolution system of a trapezoidal domain can be used for quantitatively assessing the correctness of computational simulations of NAPL dissolution front instability problems in trapezoidal domains, so that we can ensure that the computational simulation results are controlled by the physics of the NAPL dissolution system, rather than by the numerical artifacts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号