首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   2篇
大气科学   2篇
地球物理   1篇
地质学   8篇
  2022年   1篇
  2021年   2篇
  2018年   1篇
  2017年   1篇
  2011年   2篇
  2009年   1篇
  2006年   2篇
  1992年   1篇
排序方式: 共有11条查询结果,搜索用时 484 毫秒
1.
Numerical simulations show that water and oil/oily-contaminant migration are controlled by regional fluid-potential fields which may be modified locally by highly permeable lenses and buoyancy. In addition, fluid potentials are coupled to the distribution of oil/oily-contaminant via relative permeability and capillary-pressure curves. As saturation distributions evolve through space and time, so do the water and oil fluid-potential surfaces. The importance of capillary forces in oil contaminant migration and entrapment is illustrated by the fact that, in certain cases, lenses fill from above, even when the migrating fluid is lighter than water. Capillary forces operating in conjunction with lenticular reservoirs create excellent dynamic oil traps by allowing free passage of water, while retaining and concentrating oil. The analysis of oil (oily-contaminant) migration using numerical modeling and potentiometric-surface techniques is useful for the prediction of migration pathways and potential accumulation sites. On the other hand, identifying acatual accumulations from fluid-potential measurements (via inverse modeling) is not possible because fluid potentials are not uniquely dependent on saturation.  相似文献   
2.
3.
In the assessment of potentially contaminated land, the number of samples and the uncertainty of the measurements (including that from sampling) are both important factors in the planning and implementation of an investigation. Both parameters also effect the interpretation of the measurements produced, and the process of making decisions based upon those measurements. However, despite their importance, previously there has been no method for assessing if an investigation is fit‐for‐purpose with respect to both of these parameters. The Whole Site Optimised Contaminated Land Investigation (WSOCLI) method has been developed to address this issue, and to allow the optimisation of an investigation with respect to both the number of samples and the measurement uncertainty, using an economic loss function. This function was developed to calculate an ‘expectation of (financial) loss’, incorporating costs of the investigation itself, subsequent land remediation, and potential consequential costs. To allow the evaluation of the WSOCLI method a computer program ‘OCLISIM’ has been developed to produce sample data from simulated contaminated land investigations. One advantage of such an approach is that as the ‘true’ contaminant concentrations are created by the program, these values are known, which is not the case in a real contaminated land investigation. This enables direct comparisons between functions of the ‘true’ concentrations and functions of the simulated measurements. A second advantage of simulation for this purpose is that the WSOCLI method can be tested on many different patterns and intensities of contamination. The WSOCLI method performed particularly well at high sampling densities producing expectations of financial loss that approximated to the true costs, which were also calculated by the program. WSOCLI was shown to produce notable trends in the relationship between the overall cost (i.e., expectation of loss) and both the number of samples and the measurement uncertainty, which are: (a) low measurement uncertainty was optimal when the decision threshold was between the mean background and the mean hot spot concentrations. (b) When the hot spot mean concentration is equal to or near the decision threshold, then mid‐range measurement uncertainties were optimal. (c) When the decision threshold exceeds the mean of the hot spot, mid‐range measurement uncertainties were optimal. The trends indicate that the uncertainty may continue to rise if the difference between hot spot mean and the decision threshold increases further. (d) In any of the above scenarios, the optimal measurement uncertainty was lower if there is a large geochemical variance (i.e., heterogeneity) within the hot spot. (e) The optimal number of samples for each scenario was indicated by the WSOCLI method, and was between 50 and 100 for the scenarios considered generally; although there was significant noise in the predictions, which needs to be addressed in future work to allow such conclusions to be clearer.  相似文献   
4.
5.
Simulations of petroleum migration within the Red River petroleum system of the Williston Basin show that petroleum generation and secondary migration preceded the onset of an active hydrodynamic regime that persists to the present day. Furthermore: (1) a better understanding of the eastern limit of the mature source rock area, which is largely facies controlled, is required to reduce exploration risk east of the Nesson Anticline, (2) the Red River play types that have been prosperous in southeastern Saskatchewan should extend considerable distances to the north, as well as throughout central Saskatchewan and western Manitoba, Canada, and (3) accumulations that may have developed in the southwest of the basin have likely been flushed and redistributed subsequent to the onset of hydrodynamics.  相似文献   
6.
There is an increasing use of analytical macro‐beam techniques (such as portable XRF, PXRF) for geochemical measurements, as a result of their convenience and relatively low cost per measurement. Reference materials (RMs) are essential for validation, and sometimes calibration, of beam measurements, just as they are for the traditional analytical techniques that use bulk powders. RMs are typically supplied with data sheets that tabulate uncertainties in the reference values by element, for which purpose they also specify a minimum recommended mass of material to be used in the chemical analysis. This minimum mass may not be achievable using analytical beam techniques. In this study, the mass of the test portion interrogated by a handheld PXRF within pellets made from three silicate RMs (SdAR L2, M2 and H1) was estimated using a theoretical approach. It was found to vary from 0.001 to 0.3 g for an 8 mm beam size and 0.0001 to 0.045 g for a 3 mm beam. These test portion masses are mainly well below the recommended minimum mass for these particular RMs (0.2 g), but were found to increase as a function of atomic number (as might be expected). The uncertainties caused by heterogeneity (UHET) in PXRF measurements of the three RMs were experimentally estimated using two different beam diameters for eighteen elements. The elements showing the highest levels of heterogeneity (UHET > 5%) seem generally to be those usually associated with either an accessory mineral (e.g., Zr in zircon, As in pyrite) or low test portion mass (associated with low atomic number). When the beam size was changed from nominally 8 to 3 mm, the uncertainty caused by heterogeneity was seen to increase for most elements by an average ratio of 2.2. These values of UHET were used to calculate revised uncertainties of the reference values that would be appropriate for measurements made using a PXRF with these beam sizes. The methods used here to estimate UHET in PXRF measurements have a potential application to other analytical beam techniques.  相似文献   
7.

This is the first of two papers that describe the generation of a 25-member perturbed parameter ensemble (PPE) of high-resolution, global coupled simulations for the period 1900–2100, using CMIP5 historical and RCP8.5 emissions. Fifteen of these 25 coupled simulations now form a subset of the global projections provided for the UK Climate Projections 2018 (UKCP18). This first paper describes the selection of 25 variants (combinations of 47 parameters) using a set of cheap, coarser-resolution atmosphere-only simulations from a large sample of nearly 3000 variants. Retrospective 5-day weather forecasts run at climate resolution, and simulations of 2004–2009 with prescribed SST and sea ice are evaluated to filter out poor performance. We opted for a single design choice and sensitivity tests were done after the PPE was generated to demonstrate the effect of design choices on the filtering. Given our choice, only 38 of the parameter combinations were found to have acceptable performance at this stage. Idealised atmosphere-only simulations were then used to select the subset of 25 members that were as diverse as possible in terms of their CO2 and aerosol forcing, and their response to warmer SSTs. Using our parallel set of atmosphere-only and coupled PPEs (the latter from paper 2), we show that local biases in the atmosphere-only experiments are generally informative about the biases in the coupled PPE. Biases in radiative fluxes and cloud amounts are strongly informative for most regions, whereas this is only true for a smaller fraction of the globe for precipitation and dynamical variables. Therefore, the cheap experiments are an affordable way to search for promising parameter combinations but have limitations.

  相似文献   
8.
Cation and anion concentrations and oxygen and hydrogen isotopic ratios of brines in the Asmari Formation (Oligocene–early Miocene) from the Marun oil field of southwest Iran were measured to identify the origin of these brines (e.g. salt dissolution vs. seawater evaporation) as well as the involvement of water–rock reaction processes in their evolution. Marun brines are characterized by having higher concentrations of calcium (11 000–20 000 mg/L), chlorine (120 000–160 000 mg/L) and bromide (600–1000 mg/L) compared to modern seawater. Samples are also enriched in 18O relative to seawater, fall to the right of the Global Meteoric Water Line and local rain water, and plot close to the halite brine trajectory on the δD versus δ18O diagram. Geochemical characteristics of Marun brines are inconsistent with a meteoric origin, but instead correspond to residual evaporated seawater modified by water–rock interaction, most significantly dolomitization. In addition, anhydrite precipitation or sulphate reduction appears to be important in chemical modification of the Marun brines, as indicated by lower sulphate contents relative to evaporated seawater. Extensive dolomitization, the presence of anhydrite nodules and high salinity fluid inclusions in the upper parts of the Asmari Formation fit a model whereby the Marun brines likely originated from the seepage reflux of concentrated seawater during the deposition of the overlying Gachsaran Formation evaporites in the Miocene. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
9.

This paper provides a quantitative assessment of large-scale features in a perturbed parameter ensemble (PPE) of Met Office Unified Model HadGEM-GC3.05 in coupled global historical and future simulations. The main motivation for the simulations is to provide a major component of the UK Climate Projections 2018 (UKCP18), but they will also be used to make worldwide projections and inform future model development. Initially, a 25-member PPE, with 25 different parameter combinations, was simulated. Five members were subsequently dropped because either their simulated climate was unrealistically cool by 1970 or they suffered from numerical instabilities. The remaining 20 members were evaluated after completing the historical phase (1900–2005) against 13 separately selected Climate Model Intercomparison Project Phase 5 (CMIP5) models, and five more members were dropped. The final product is a combined projection system of 15 PPE members and 13 CMIP5 models, which has a number of benefits. In particular, the range of outcomes available from the combined set of 28 is often larger than from either of the two constituent ensembles, thus providing users with a more complete picture of plausible impacts. Here we mainly describe the evaluation process of the 20 PPE members. We evaluate biases in a number of important properties of the global coupled system, including assessment of climatological averages, coupled modes of internal variability and historical and future changes. The parameter combinations yielded plausible yet diverse atmosphere and ocean model behaviours. The range of global temperature changes is narrow, largely driven by use of different CO2 pathways. The range of global warming is seemingly not linked to range of feedbacks estimated from atmosphere-only runs, though we caution that the range of the latter is narrow relative to CMIP5, and therefore this result is not unexpected. This is the second of two papers describing the generation of the PPE for UKCP18 projections. Part 1 (Sexton et al. 2021) describes the selection of 25 parameter combinations of 47 atmosphere and land surface parameters, using a set of cheap atmosphere-only runs at a coarser resolution from nearly 3000 samples of parameter space.

  相似文献   
10.
Hokanson  K. J.  Rostron  B. J.  Devito  K. J.  Hopkinson  C.  Mendoza  C. A. 《Hydrogeology Journal》2022,30(1):251-264
Hydrogeology Journal - The spatial and temporal controls on variability of the relative contributions of groundwater within and between flow systems to shallow lakes in the low-relief glaciated...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号