首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
大气科学   4篇
地质学   1篇
海洋学   6篇
  2021年   1篇
  2016年   2篇
  2015年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2004年   2篇
  2000年   1篇
  1999年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
The future regional sea level (RSL) rise in the western North Pacific is investigated by dynamical downscaling with the Regional Ocean Modeling System (ROMS) with an eddy-permitting resolution based on three global climate models—MIROC-ESM, CSIRO-Mk3.6.0, and GFDL-CM3—under the highest greenhouse-gas emission scenario. The historical run is forced by the air-sea fluxes calculated from Coordinated Ocean Reference Experiment version 2 (COREv2) data. Three future runs—ROMS-MIROC, ROMS-CSIRO, and ROMS-GFDL—are forced with an atmospheric field constructed by adding the difference between the climate model parameters for the twenty-first and twentieth century to fields in the historical run. In all downscaling, the RSL rise along the eastern coast of Japan is generally half or less of the RSL rise maxima off the eastern coast. The projected regional (total) sea level rises along the Honshu coast during 2081–2100 relative to 1981–2000 are 19–25 (98–104), 6–15 (71–80), and 8–14 (80–86) cm in ROMS-MIROC, ROMS-CSIRO, and ROMS-GFDL, respectively. The discrepancies of the RSL rise along the Honshu coast between the climate models and downscaling are less than 10 cm. The RSL changes in the Kuroshio Extension (KE) region in all downscaling simulations are related to the changes of KE (northward shift or intensification) with climate change.  相似文献   
2.
Air–sea interaction over ocean fronts and eddies   总被引:1,自引:0,他引:1  
Air–sea interaction at ocean fronts and eddies exhibits positive correlation between sea surface temperature (SST), wind speed, and heat fluxes out of the ocean, indicating that the ocean is forcing the atmosphere. This contrasts with larger scale climate modes where the negative correlations suggest that the atmosphere is driving the system. This paper examines the physical processes that lie behind the interaction of sharp SST gradients and the overlying marine atmospheric boundary layer and deeper atmosphere, using high resolution satellite data, field data and numerical models. The importance of different physical mechanisms of atmospheric response to SST gradients, such as the effect of surface stability variations on momentum transfer, pressure gradients, secondary circulations and cloud cover will be assessed. The atmospheric response is known to create small-scale wind stress curl and divergence anomalies, and a discussion of the feedback of these features onto the ocean will also be presented. These processes will be compared and contrasted for different regions such as the Equatorial Front in the Eastern Pacific, and oceanic fronts in mid-latitudes such as the Gulf Stream, Kuroshio, and Agulhas Return Current.  相似文献   
3.
4.
Relations in year-to-year variability between wintertime Sea-Ice Concentrations (SICs) in the Okhotsk Sea and atmospheric anomalies consisting of zonal and meridional 1000-hPa wind speeds and 850-hPa air temperatures are studied using a singular value decomposition analysis. It is revealed that the late autumn (October–November) atmospheric conditions strongly influence sea-ice variability from the same season (late autumn) through late winter (February—March), in which sea-ice extent is at its maximum. The autumn atmospheric conditions for the positive sea-ice anomalies exhibit cold air temperature anomalies over the Okhotsk Sea and wind anomalies blowing into the Okhotsk Sea from Siberia. These atmospheric conditions yield anomalous ocean-to-atmosphere heat fluxes and cold sea surface temperature anomalies in the Okhotsk Sea. Hence, these results suggest that the atmospheric conditions affect the sea-ice through heat anomalies stored in sea-ice and oceanic fields. The late autumn atmosphere conditions are related to large 700-hPa geopotential height anomalies over the Bering Sea and northern Eurasia, which are related to a stationary Rossby wave propagation over the North Pacific and that from the North Atlantic to Eurasia, respectively. In addition, the late autumn atmospheric preconditioning also plays an important role in the decreasing trend in the Okhotsk sea-ice extent observed from 1980 to the mid-1990s. Based on the lagged sea-ice response to the late autumn atmosphere, a simple seasonal prediction scheme is proposed for the February–March sea-ice extent using four-month leading atmospheric conditions. This scheme explains 45% of the variance of the Okhotsk sea-ice extent.  相似文献   
5.
The dense water formation process under polynya or lead is examined by numerical experiments using a three-dimensional non-hydrostatic model. Many numerical experiments on isolated convection in an initially homogeneous fluid have been performed for different sets of external parameters, in order to investigate a relationship between the convection process and the external parameters. The main focus is on the situation in which the horizontal length scale of disk-shaped buoyancy forcing (radius R) is comparable with the total water depth (H). The two dynamical regimes described in previous work—the baroclinically unstable convection and the baroclinically stable convection—are confirmed in the experiments. A horizontal shift of a convective chimney is important to a density anomaly in baroclinically stable convection. For the stable range, as R is reduced R/H < 0.7, a new regime is found, called “single-plume convection”, in which multiple convective plumes do not fully develop, and the density anomaly scale has nearly no dependency on R. This change of dependency on R is consistent with that derived by scaling analysis. The non-hydrostatic component is more significant than the hydrostatic one in the single-plume convection. The information obtained is useful for parameterizing dense water formation under ice cover in a numerical model with a large grid size; i.e., the newly formed water has a density anomaly independent of the polynya size smaller than the water depth, while the anomaly increases as the size exceeds the depth.  相似文献   
6.
7.
8.
The interdecadal modulation of interannual variability of the atmosphere and ocean is examined over the North Pacific by using Wavelet Transform combined with Empirical Orthogonal Function (EOF) or Singular Value Decomposition (SVD) analysis. For the period of record 1899–1997, the interannual variability of the wintertime Aleutian Low, identified by either the North Pacific Index or the leading eigenvector (EOF-1) of North Pacific sea level pressure (SLP), exhibits an interdecadal modulation. Interannual variance in the strength of the Aleutian Low was relatively large from the mid-1920s to mid-1940s and in the mid-1980s, but relatively small in the periods from 1899 to the mid-1920s and from the mid-1940s to the mid-1970s. The periods of high (low) interannual variability roughly coincide with pentadecadal regimes having a time averaged relatively intense (weak) Aleutian Low. Consistent with this SLP variability the interannual variance in the zonal wind stress is strengthened in the central North Pacific after the 1970s. The SLP EOF-2, which is related to the North Pacific Oscillation, exhibited a strengthening trend from the beginning of this century to the mid-1960s. After the 1970s, the interannual variance of SLP EOF-2 is generally smaller than that in the period from 1930 to 1970. Similar interdecadal changes in interannual variance are found in expansion coefficients for the first two EOFs of the Pacific sector 500 hPa height field for the period 1946–1993. EOF-1 of Pacific sector 500 hPa corresponds to the Pacific/North American (PNA) teleconnection pattern, while EOF-2 is related to the Western Pacific (WP) pattern. The relative influence of the atmospheric PNA and WP interannual variability on North Pacific SSTs appears to have varied at pentadecadal time scales. Results from an SVD analysis of winter season (December–February) 500 hPa and North Pacific spring season (March–May) SST fields demonstrate that the PNA-related SST anomaly exhibited larger interannual variance after the 1970s, whereas the interannual variance of the WP related SST anomaly is larger before the 1970s. Correlations between the coastal North Pacific SST records and gridded atmospheric field data also change on interdecadal time scales. Our results suggest that the SST records from both the northwest and northeast Pacific coasts were more closely coupled with the PNA teleconnection pattern during the periods of 1925–1947 and 1977–1997 than in the regime from 1948 to 1976. Teleconnections between ENSO and preferred patterns of atmospheric variability over the North Pacific also appear to vary on interdecadal time scales. However, these variations do not reflect a unique regime-dependent influence. Our results indicate that ENSO is primarily related to the PNA (WP) pattern in the first (last) half of the present century. Correlation coefficients between indices for ENSO and PNA-like atmospheric variability are remarkably weak in the period from 1948 to 1976.  相似文献   
9.

Sea surface temperature (SST) prediction based on the multi-model seasonal forecast with numerous ensemble members have more useful skills to estimate the possibility of climate events than individual models. Hence, we assessed SST predictability in the North Pacific (NP) from multi-model seasonal forecasts. We used 23 years of hindcast data from three seasonal forecasting systems in the Copernicus Climate Change Service to estimate the prediction skill based on temporal correlation. We evaluated the predictability of the SST from the ensemble members' width spread, and co-variability between the ensemble mean and observation. Our analysis revealed that areas with low prediction skills were related to either the large spread of ensemble members or the ensemble members not capturing the observation within their spread. The large spread of ensemble members reflected the high forecast uncertainty, as exemplified in the Kuroshio–Oyashio Extension region in July. The ensemble members not capturing the observation indicates the model bias; thus, there is room for improvements in model prediction. On the other hand, the high prediction skills of the multi-model were related to the small spread of ensemble members that captures the observation, as in the central NP in January. Such high predictability is linked to El Niño Southern Oscillation (ENSO) via teleconnection.

  相似文献   
10.
A semi-analytical model of the Panama throughflow is presented. The model expresses the throughflow transport as a function of deep water formation in the North Pacific and in the North Atlantic, and of the Panama Gateway depth. The model is derived from the integral of the momentum equation along a circumpolar path, and can be interpreted from the point of view of the vorticity balance. The important conditions are whether the deep water, whose location is considered to be above the bottom water formed around Antarctica, originates from the North Atlantic or from the North Pacific, and whether the Panama Gateway is shallower than the lower boundary of the deep water. The present model indicates that the barotropic transport through the Panama Gateway is eastward, except for the case where the deep water is formed in the North Pacific and the sill of the Panama Gateway is shallow. The baroclinic structure of the Panama throughflow depends on whether the deep water is formed in the North Pacific or in the North Atlantic. These qualitative implications of the model are consistent with recent numerical studies and proxy-based paleoceanographic studies. Numerical experiments performed in the present study reinforce confidence in the semi-analytical model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号