首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
沿海水位和大尺度气候状态——降尺度技术在日本列岛的应用  相似文献   

2.
王龙  王张华  李翠玉 《海洋学报》2022,44(9):109-123
重建高质量的全新世相对海平面变化曲线,可为海岸带人类社会科学预测及应对未来海平面上升风险提供重要的地质历史依据和长时间尺度的数据参考。目前已发表了多条福建海岸带全新世相对海平面变化曲线,然而已有曲线反映的相对海平面变化历史存在较大差异,甚至是矛盾结果。同时,相对海平面长期变化机制及影响因素也不明确。本研究收集、整理了福建沿海已发表的全新世相对海平面数据,对已有数据的年代、高程、指示意义等属性信息进行重新检查和校正,根据国际方法体系,建立了该区域一个标准化的全新世“相对海平面数据库”,共包括海平面数据183个。在此基础上,采用“变量误差–综合高斯(EIV-IGP)”统计学模型,提出了一条新的福建沿海全新世相对海平面变化曲线。并应用“冰川–水均衡调整”(GIA)理论,开展了相对海平面变化GIA模拟。最后,综合相对海平面变化地质记录及GIA模拟结果,得出以下结论:(1)福建沿海距今11.28~7.08 cal ka,相对海平面由(–23.55±6.94)m快速连续上升至(–1.51±1.80)m;距今7.08~4.08 cal ka,相对海平面由(–1.51±1.80)m缓慢上升至约(1.09±1.38)m;距今3.48 cal ka前后,相对海平面高于现代海平面约(1.35±1.23)m;此后,波动下降并逐渐接近现代位置;(2)“冰川–水均衡调整”作用是福建全新世相对海平面变化的主要长期作用机制;距今11.28~7.00 cal ka,相对海平面变化主要受冰盖融水控制;距今7.00 cal ka以来,“水均衡调整”作用逐渐占据主导;(3)福建沿海中–晚全新世(距今6.75~0.16 cal ka)期间,存在高于现今海面位置的“高海平面”现象;不同于传统构造运动主导观点,研究认为GIA引起的“陆地掀斜”和“海洋虹吸”作用,可能是该区域“高海平面”现象产生的主要原因;(4)福建沿海全新世相对海平面变化,存在一定程度的空间差异。不同岸段之间的沉积物压实、差异性构造运动和潮差变化等非GIA因素,可能是这一现象产生的重要原因。  相似文献   

3.
Based on the concept of the Wiener&–Granger causality, a seasonal trivariate analysis of directional couplings between sea surface temperature variations in tropical latitudes of the Pacific, Atlantic, and Indian Oceans has been performed. These variations are related to significant modes of regional and global climatic variability. We have analyzed time series of monthly indices of Pacific Ocean processes of the El Ni&ño/Southern Oscillation (ENSO), equatorial Atlantic mode (EAM), and Indian Ocean Dipole (IOD)&—along with its western and eastern poles for the period of 1870&–2015. A scheme of interactions between the processes under study where coupling strength estimates are presented, along with estimates of the season of its maximal value and the coupling coefficient sign, has been developed. We have found the seasonal influences of ENSO on the western and eastern poles of IOD, the eastern pole of IOD on ENSO, EAM on ENSO, and IOD on EAM to be the most significant couplings.  相似文献   

4.
The pole tide, which is driven by the Chandler Wobble, has a period of about 14 months and typical amplitudes in the World Ocean of ~0.5 cm. However, in the Baltic Sea the pole tide is anomalously high. To examine this effect we used long-term hourly sea level records from 23 tide gauges and monthly records from 64 stations. The lengths of the series were up to 123 years for hourly records and 211 years for monthly records. High-resolution spectra revealed a cluster of neighboring peaks with periods from 410 to 440 days. The results of spectral analysis were applied to estimate the integral amplitudes of pole tides from all available tide gauges along the coast of the Baltic Sea. The height of the pole tide was found to gradually increase from the entrance (Danish Straits, 1.5–2 cm) to the northeast end of the sea. The largest amplitudes—up to 4.5–7 cm—were observed in the heads of the Gulf of Finland and the Gulf of Bothnia. Significant temporal fluctuations in amplitudes and periods of the pole tide were observed during the 19th and 20th centuries.  相似文献   

5.
I~IOXThe sea level rise threatens China's coastal plains and river deltas and makes them the vulnerable areas due to their loW elevation.Since the 1980s, the Chinese scientists have paid great attention to the problem of the sealevel rise caused by the global warming. They have analyZed and calculated the trend of the relative sea level change along the China's coast in the past 50 a. The result of study shows that therising rate of the sea level along China's coast is (1. 7 i 0. 3) rum/a.…  相似文献   

6.
The UNEP in its regional seas program in 1989 has included Pakistan in a group of countries which are vulnerable to the impact of rising sea level. If the present trend of sea level rise (SLR) at Karachi continues, in the next 50 years the sea level rise along the Pakistan Coast will be 50 mm (5 cm). Since the rising rates of sea level at Karachi are within the global range of 1-2 mm/year, the trends may be treated as eustatic SLR. Historical air temperature and sea surface temperature (SST) data of Karachi also show an increasing pattern and an increasing trend of about 0.67°C has been registered in the air temperature over the last 35 years, whereas the mean SST in the coastal waters of Karachi has also registered an increasing trend of about 0.3°C in a decade. Sindh coastal zone is more vulnerable to sea level rise than Baluchistan coast, as uplifting of the coast by about 1-2 mm/year due to subduction of Indian Ocean plate is a characteristic of Baluchistan coast. Within the Indus deltaic creek system, the area nearby Karachi is more vulnerable to coastal erosion and accretion than the other deltaic region, mainly due to human activities together with natural phenomena such as wave action, strong tidal currents, and rise in sea level. Therefore, The present article deals mainly with the study of dynamical processes such as erosion and accretion associated with sea level variations along the Karachi coast and surrounding Indus deltaic coastline. The probable beach erosion in a decade along the sandy beaches of Karachi has been estimated. The estimates show that 1.1 mm/year rise in sea level causes a horizontal beach loss of 110 mm per year. Therefore, coast eroded with rise in sea level at Karachi and surrounding sandy beaches would be 1.1 m during a period of next 10 years. The northwestern part of Indus delta, especially the Gizri and Phitti creeks and surrounding islands, are most unstable. Historical satellite images are used to analyze the complex pattern of sediment movements, the change in shape of coastline, and associated erosion and accretion patterns in Bundal and Buddo Islands. The significant changes in land erosion and accretion areas at Bundal and Buddo Islands are evident and appear prominently in the images. A very high rate of accretion of sediments in the northwestern part of Buddo Island has been noticed. In the southwest monsoon season the wave breaking direction in both these islands is such that the movement of littoral drift is towards west. Erosion is also taking place in the northeastern and southern part of Bundal Island. The erosion in the south is probably due to strong wave activities and in the northeast is due to strong tidal currents and seawater intrusion. Accretion takes place at the northwest and western parts of Bundal Island. By using the slope of Indus delta, sea encroachment and the land area inundation with rising sea level of 1 m and 2 m have also been estimated.  相似文献   

7.
The data set of pressure-corrected monthly mean sea level from sites on the coast of the eastern South Atlantic Ocean has now been extended to cover the years from 1959 to 1985. The length of this data set is now comparable to those used in studies of long-term variability in sea level in the eastern Pacific Ocean. Comparison of the data sets reveals a qualitative agreement in the character of the variability in sea level between the two oceans. In particular, the possibility of high sea-level events propagating polewards from the equatorial Atlantic in the manner of the Pacific El Niño is explored and confirmed. The sea-level record, supported by evidence from published studies of variability in sea surface temperature, shows that the years 1963, 1974 and 1984 should be considered to be years of anomalously high sea level along the entire eastern South Atlantic Ocean.  相似文献   

8.
区域海平面变化是目前气候变化研究的热点问题。海平面变化具有时间和空间的异质性,分析海平面变化,应充分考虑时间和空间的差异。基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、最小二乘法,利用卫星高度计、验潮站数据,分析了1993—2016年间中国近海及周边海域海平面的时空变化规律。利用EEMD,计算了1993—2016年中国近海海平面变化空间结构的时间变化规律。结果表明中国近海海平面持续升高,但海平面变化在空间分布和时间上的变化并不均匀。空间结构大致分三个部分:大陆沿岸海平面持续上升且上升速率逐年增加,近海海区升高速率逐年降低,而研究区域内的西太平洋西部海区先减速升高又加速降低。分别利用EEMD分解和线性最小二乘拟合算法计算了1993—2016年中国近海海平面平均上升速率的空间分布,结果表明两种方法得到的海平面升高速率的空间分布大致吻合。两种方法均显示沿海地区的上升速率远大于近海海区,沿海地区上升速率大约为6 mm/a,近海海区上升速率大约为2 mm/a。但EEMD方法显示在广东沿岸和靠近赤道部分区域的上升速率更大。分别计算了大陆沿岸、近海及西太平洋西部海区三个海区内空间平均的海平面时间变化的线性及非线性趋势。非线性趋势显示大陆沿岸海区海平面加速上升,上升速率由1993年的3.65 mm/a,增加到2016年的5.03 mm/a;近海地区海平面上升速率逐年变小,由1993年的4.51 mm/a,减缓至2016年的3.8 mm/a;西太平洋西部海区海平面先减速上升,后加速下降,从1993年的上升率为9.5 mm/a,逐渐变化到2016年的下降率为2.27 mm/a。利用验潮站数据分析了大连、坎门、香港的水位变化,除大连海平面上升速率降低外,其余均显示海平面上升速度逐年升高,和卫星高度计的结果吻合。  相似文献   

9.
基于海洋站潮位观测和中国沿海海平面变化影响调查等数据,分析了辽东湾沿岸海平面变化及海岸侵蚀状况,并定量评估了未来海平面上升情景下,辽东湾两岸典型沙质海岸侵蚀影响和沙滩养护投入。分析预测和评估结果表明:1980-2017年,辽东湾沿海海平面上升速率为3.0 mm/a,其中辽东湾东岸沿海海平面上升速率明显高于西岸。2009-2017年,辽宁营口白沙湾、绥中网户、绥中南山港和绥中团山气象观测场岸段后退和下蚀较为严重,部分岸段滩肩蚀退达2~3 m/a。预计2100年,辽东湾沿海海平面上升幅度在20~48 cm之间,由海平面上升引发的辽东湾海岸侵蚀土地损失为23.1 km2,土地经济损失为1410万元。为减缓海岸侵蚀,旅游沙滩和一般沙滩养护总投入分别为11亿元和46亿元,全岸段养护成本较高,应选取旅游沙滩等重点岸段进行养护。  相似文献   

10.
Satellite-derived sea surface temperatures illustrate the variability of the path of the Tsushima Current in the Sea of Japan. In the spring of 1981 the Tsushima Current did not split as it left the Korea Strait and flowed into the Sea of Japan, which is contrary to the historical concept of branching. Warm water remained along Honshu, the main island of Japan, making a strong front oriented in an east-west direction. Hydrographic data confirm that this spring condition lasted through to the fall of 1981. On the other hand, during the springs of 1982 and 1983 the branching is evident from satellite images: one branch flowed northward along the east coast of Korea, and the other flowed eastward along Honshu of Japan.  相似文献   

11.
The results of investigating the preparation zone of the catastrophic earthquake of March 11, 2011, near the eastern coast of Honshu Island are presented. A retrospective analysis of the focal mechanisms of deep earthquakes in the western part of the Pacific Ocean made it possible to reveal their influence on the zone of the Tohoku earthquake source. The preparation of this earthquake is also investigated within an analysis of the seismotectonic deformation processes at the regional level, which includes an estimation of the temporal trends of some key parameters, as well as the detection of their variations and the spatial confinement of anomalies to the source zone.  相似文献   

12.
The statistical properties of shallow temperature inversions in the Pacific Ocean near Japan were investigated using data obtained from. BT observations. In the sea east of Honshu, the Kuroshio front forms the southern boundary of the area where temperature inversions are abundant. Though the occurrence frequency of the temperature inversion layers is very low in the sea south of Honshu, the path of the Kuroshio influences its regional distribution in this region also, and the high occurrence area shifts offshore when the large cold water mass is present off Enshu-nada. The magnitude of the inversion temperature differences in the sea south of Honshu is considerably smaller than that in the sea east of Honshu. The magnitude of inversion thickness has a clear tendency to increase from south to north in the sea east of Honshu, reflecting the higher occurrence frequency of large-scale thick inversion layers in the northern part under the influence of the sub-arctic water mass. The frequency distribution of the inversion thickness in each sub-region (1° square area) in the sea south of Honshu is very similar to that in the region just south of the Kuroshio front in the sea east of Honshu, suggesting that the inversion layers may be generated by similar mechanisms in the sea south of the Kuroshio front.  相似文献   

13.
Mean sea level variations in the eastern Asia region during 1950 to 1991 are investigated with the use of observed sea level data at 16 stations. It is suggested from the data analysis, that the main cause of long-term sea level variation in this region may be the plate tectonic processes. The mean sea levels along the eastern coasts of Japan and the Philippines, and that along the southern coast of Indonesia have risen due to the subsidence of Pacific, Philippine and Australian plates under the Eurasian plate, respectively. On the other hand, the mean sea levels along the western coasts of Japan and the Philippines, and that along the northern coast of Indonesia have fallen. The distribution map of mean sea level rise at the year 2030 from 1985 in this region is presented on the basis of the results of this work and IPCC (1990).  相似文献   

14.
Dynamical downscaling is developed to better predict the regional impact of global changes in the framework of scenarios. As an intermediary step towards this objective we used the Regional Ocean Modeling System (ROMS) to downscale a low resolution coupled atmosphere–ocean global circulation model (AOGCM; IPSL-CM4) for simulating the recent-past dynamics and biogeochemistry of the Benguela eastern boundary current. Both physical and biogeochemical improvements are discussed over the present climate scenario (1980–1999) under the light of downscaling.Despite biases introduced through boundary conditions (atmospheric and oceanic), the physical and biogeochemical processes in the Benguela Upwelling System (BUS) have been improved by the ROMS model, relative to the IPSL-CM4 simulation. Nevertheless, using coarse-resolution AOGCM daily atmospheric forcing interpolated on ROMS grids resulted in a shifted SST seasonality in the southern BUS, a deterioration of the northern Benguela region and a very shallow mixed layer depth over the whole regional domain. We then investigated the effect of wind downscaling on ROMS solution. Together with a finer resolution of dynamical processes and of bathymetric features (continental shelf and Walvis Ridge), wind downscaling allowed correction of the seasonality, the mixed layer depth, and provided a better circulation over the domain and substantial modifications of subsurface biogeochemical properties. It has also changed the structure of the lower trophic levels by shifting large offshore areas from autotrophic to heterotrophic regimes with potential important consequences on ecosystem functioning. The regional downscaling also improved the phytoplankton distribution and the southward extension of low oxygen waters in the Northern Benguela. It allowed simulating low oxygen events in the northern BUS and highlighted a potential upscaling effect related to the nitrogen irrigation from the productive BUS towards the tropical/subtropical South Atlantic basin. This study shows that forcing a downscaled ocean model with higher resolution winds than those issued from an AOGCM, results in improved representation of physical and biogeochemical processes.  相似文献   

15.
The rapid Arctic summer sea ice reduction in the last decade has lead to debates in the maritime industries on the possibility of an increase in cargo transportation in the region. Average sailing times on the North Sea Route along the Siberian Coast have fallen from 20 days in the 1990s to 11 days in 2012–2013, attributed to easing sea ice conditions along the Siberian coast. However, the economic risk of exploiting the Arctic shipping routes is substantial. Here a detailed high-resolution projection of ocean and sea ice to the end of the 21st century forced with the RCP8.5 IPCC emission scenario is used to examine navigability of the Arctic sea routes. In summer, opening of large areas of the Arctic Ocean previously covered by pack ice to the wind and surface waves leads to Arctic pack ice cover evolving into the Marginal Ice Zone. The emerging state of the Arctic Ocean features more fragmented thinner sea ice, stronger winds, ocean currents and waves. By the mid 21st century, summer season sailing times along the route via the North Pole are estimated to be 13–17 days, which could make this route as fast as the North Sea Route.  相似文献   

16.
本文利用大洋环流模式POP研究RCP4.5情景下21世纪格陵兰冰川不同的融化速率对全球及区域海平面变化的影响。结果显示:当格陵兰冰川的融化速率以每年1%增加时,全球大部分海域的动力和比容海平面变化基本不变,主要是由于格陵兰冰川在低速融化时并不会导致大西洋经向翻转流减弱。当格陵兰冰川的融化速率以每年3%和每年7%增加时,动力海平面在北大西洋副极地、大西洋热带、南大西洋副热带和北冰洋海域呈现出显著的上升趋势,这是因为格陵兰冰川快速融化导致大量的淡水输入附近海域,造成该上层海洋层化加强和深对流减弱,导致大西洋经向翻转流显著减弱;与此同时,热比容海平面在北冰洋、格陵兰岛南部海域和大西洋副热带海域显著下降,而在热带大西洋和湾流海域明显上升;此时盐比容海平面的变化与热比容海平面是反相的,这是由于大量的低温低盐水的输入,造成北大西洋副极地海域变冷变淡、大西洋经向翻转流和热盐环流显著减弱,引起了太平洋向北冰洋的热通量和淡水通量减少,导致了北冰洋海水变冷变淡,同时热带大西洋滞留了更多的高温高盐水,随着湾流被带到北大西洋,北大西洋副极地海域低温低盐的海水,被风生环流输运到副热带海域。  相似文献   

17.
TrendanalysisofrelativesealevelriseorfallofthetidegaugestationsinthePacific¥MaJirui;TianSuzhen;ZhengWenzhenandChaiXinminInsit...  相似文献   

18.
The rise or fall trend of the sea level along the coast of East Asia is estimated with different computational methods based on sea‐level data of longer time series collected from 45 tide gauge stations there. The results show that the relative sea level, on average, has been rising along the coast of the whole of East Asia from the early 1950s to the early 1990s. The regional change of sea‐level rise or fall is greater. The sea level along the coast of China, except along the Shandong Peninsula, is rising; the sea level along the coast of the southern islands of Japan and the southern Korean peninsula, as estimated by several methods, is mostly rising, but the rate of rise is very small. The difference between the results estimated in this study and the corresponding results of Barnett along the coast of East Asia is significant. This is mainly because the number of the stations selected by Barnett is relatively small, and the selected stations are concentrated at the southern and northern ends of the region, without data in the middle of the region. The effect of the estimating methods is smaller.  相似文献   

19.
Based on long-term tide gauge observations in the last 60 years, the temporal and spatial variation characteristics of sea level change along the coast of China are analyzed. The results indicate that the sea level along the coast of China has been rising at an increasing rate, with an estimated acceleration of 0.07 mm/a2. The rise rates were 2.4 mm/a, 3.4 mm/a and 3.9 mm/a during 1960–2020, 1980–2020 and 1993–2020, respectively. In the last 40 years, the coastal sea level has risen fastest in the South China Sea and slowest in the Yellow Sea. Seasonal sea levels all show an upward trend but rise faster in winter and spring and slower in autumn. Sea level change along the coast of China has significant periodic oscillations of quasi-2 a, 4 a, 7 a, 11 a, quasi-19 a and 30–50 a, among which the 2–3 a, 11 a, and 30–50 a signals are most remarkable, and the amplitude is approximately 1–2 cm. The coastal sea level in the most recent decade reached its highest value in the last 60 years. The decadal sea level from 2010 to 2019 was approximately 133 mm higher than the average of 1960–1969. Empirical orthogonal function analysis indicates that China’s coastal sea level has been changing in a north-south anti-phase pattern, with Pingtan and Fujian as the demarcation areas. This difference was especially obvious during 1980–1983, 1995–1997 and 2011–2013. The coastal sea level was the highest in 2016, and this extreme sea level event was analyzed to be related mainly to the anomalous wind field and ENSO.  相似文献   

20.
The branches of the Tsushima Warm Current (TWC) are realistically reproduced using a three-dimensional ocean general circulation model (OGCM). Simulated structures of the First Branch and the Second Branch of the TWC (FBTWC and SBTWC) in the eastern Japan Sea are mainly addressed in this study, being compared with measurement in the period September–October 2000. This is the first numerical experiment so far in which the OGCM is laterally exerted by real volume transports measured by acoustic Doppler current profiler (ADCP) through the Tsushima Straits and the Tsugaru Strait. In addition, sea level variation measured by tide-stations along the Japanese coast as well as satellite altimeters is assimilated into the OGCM through a sequential data assimilation method. It is demonstrated that the assimilation of sea level variation at the coastal tide-stations is useful in reproducing oceanic conditions in the nearshore region. We also examine the seasonal variation of the branches of the TWC in the eastern Japan Sea in 2000. It is suggested as a consequence that the FBTWC is continuous along northwestern Honshu Island in summertime, while it degenerates along the coast between the Sado Strait and the Oga Peninsula in other seasons. On the other hand, a mainstream of the SBTWC exists with meanders and eddies in the offshore region deeper than 1000 m to the north of the Sado Island throughout the year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号