首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   0篇
地球物理   71篇
地质学   39篇
海洋学   1篇
自然地理   3篇
  2015年   1篇
  2014年   3篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
  2007年   1篇
  2005年   1篇
  2003年   2篇
  2002年   9篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   7篇
  1990年   9篇
  1989年   10篇
  1988年   5篇
  1987年   7篇
  1986年   7篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1977年   2篇
  1976年   2篇
  1974年   1篇
  1969年   2篇
  1967年   2篇
排序方式: 共有114条查询结果,搜索用时 15 毫秒
1.
2.
3.
the single ignimbrite cooling unit E (average thickness, 28 m; volume, ca. 30 km3) forms the uppermost member of the Miocene Upper Mogán Formation on Gran Canaria. It is strongly chemically zoned from basal, first-erupted comendite (peralkaline rhyolite) to late-erupted trachyte, and, apart from an upper trachytic zone, it is densely welded. E was emplaced onto a surface inclined ca. 2–5° from the source caldera. Detailed mapping of key sections, up to 300 m long, exposed in barranco walls, ca. 10 km from the caldera margin, reveals structures that are interpreted to have been produced by rheomorphic deformation of the ignimbrite along shear zones. The shear zones formed within the lower-viscosity comenditic tuff. Extensional structures include mega-boudinage and decapitated sequences and compression resulted in sequence repitition by overthrusting. Mechanisms traditionally thought to be important during rheomorphic deformation of welded tuffs (compaction, lateral creep, folding, vertical density-driven diapirism) cannot account for these features, which reflect lateral (post-compactional) rheomorphic movement locally in excess of 800 m. We suggest the following sequence of events: emplacement of the several flow units; compaction, with little lateral movement; rheomorphic deformation. During and after compaction, layers of secondary porosity developed within the comenditic tuff, possibly where upward escape of gas was prevented by overlying, relatively impermeable layers of densely compacted ignimbrite. These structurally weak layers of high porosity subsequently acted as shear zones.  相似文献   
4.
Trace element concentrations of altered basaltic glass shards (layer silicates) and zeolites in volcaniclastic sediments drilled in the volcanic apron northeast of Gran Canaria during Ocean Drilling Program (ODP) leg 157 document variable element mobilities during low-temperature alteration processes in a marine environment. Clay minerals (saponite, montmorillonite, smectite) replacing volcanic glass particles are enriched in transition metals and rare earth elements (REE). The degree of retention of REE within the alteration products of the basaltic glass is correlated with the field strength of the cations. The high field-strength elements are preferentially retained or enriched in the alteration products by sorption through clay minerals. Most trace elements are enriched in a boundary layer close to the interface mineral-altered glass. This boundary layer has a key function for the physico-chemical conditions of the subsequent alteration process by providing a large reactive surface and by lowering the fluid permeability. The release of most elements is buffered by incorporation into secondary precipitates (sodium-rich zeolites, phillipsite, Fe- and Mn-oxides) as shown by calculated distribution coefficients between altered glasses and authigenic minerals. Chemical fluxes change from an open to a closed system behavior during prograde low-temperature alteration of volcaniclastic sediments with no significant trace metal flux from the sediment to the water column.  相似文献   
5.
Seismic, sidescan sonar, bathymetric multibeam and ODP (Ocean Drilling Program) data obtained in the submarine channel between the volcanic islands of Gran Canaria and Tenerife allow to identify constructive features and destructive events during the evolution of both islands. The most prominent constructive features are the submarine island flanks being the acoustic basement of the seismic images. The build-up of Tenerife started following the submarine stage of Gran Canaria because the submarine island flank of Tenerife onlaps the steeper flank of Gran Canaria. The overlying sediments in the channel between Gran Canaria and Tenerife are chaotic, consisting of slumps, debris flow deposits, syn-ignimbrite turbidites, ash layers, and other volcaniclastic rocks generated by eruptions, erosion, and flank collapse of the volcanoes. Volcanic cones on the submarine island flanks reflect ongoing submarine volcanic activity. The construction of the islands is interrupted by large destructive events, especially by flank collapses resulting in giant landslides. Several Miocene flank collapses (e.g., the formation of the Horgazales basin) were identified by combining seismic and drilling data whereas young giant landslides (e.g., the Güimar debris avalanche) are documented by sidescan, bathymetric and drilling data. Sediments are also transported through numerous submarine canyons from the islands into the volcaniclastic apron. Seismic profiles across the channel do not show a major offset of reflectors. The existence of a repeatedly postulated major NE-SW-trending fault zone between Gran Canaria and Tenerife is thus in doubt. The sporadic earthquake activity in this area may be related to the regional stress field or the submarine volcanic activity in this area. Seismic reflectors cannot be correlated through the channel between the sedimentary basins north and south of Gran Canaria because the channel acts as sediment barrier. The sedimentary basins to the north and south evolved differently following the submarine growth of Gran Canaria and Tenerife in the Miocene.  相似文献   
6.
The Quepos, Nicoya and Herradura oceanic igneous terranes in Costa Rica are conspicuous features of a Mid to Late Cretaceous regional magmatic event that encompasses similar terranes in Central America, Colombia, Ecuador and the Caribbean. The Quepos terrane (66?Ma), which consists of ol-cpx phyric, tholeiitic pillow lavas overlain by highly vesicular hyaloclastites, breccias and conglomerates, is interpreted as an uplifted seamount/ocean island complex. The Nicoya (~90?Ma) and Herradura terranes consist of fault-bounded sequences of sediments, tholeiitic volcanics (pillow lavas and massive sheet flows) and plutonic rocks. The volcanic rocks were emplaced at relatively high eruption rates in moderate to deep water, possibly forming part of an oceanic plateau. Major and trace element data from Nicoya/Herradura tholeiites indicate higher melting temperatures than inferred for normal mid-ocean-ridge basalts (MORB) and/or a different source composition. Sr–Nd–Pb isotopic ratios from all three terranes are distinct from MORB but resemble those from the Galápagos hotspot. The volcanological, petrological and geochemical data from Costa Rican volcanic terranes, combined with published age data, paleomagnetic results and plate tectonic reconstructions of this region, provide strong evidence for a Mid Cretaceous (~90Ma) age for the Galápagos hotspot, making it one of the oldest known, active hotspots on Earth. Our results also support an origin of the Caribbean Plate through melting of the head of the Galápagos starting plume.  相似文献   
7.
8.
Rothenberg scoria cone Eifel formed by an alternation of three Strombolian and three phreatomagmatic eruptive phases. Eruptions took place from up to six vents on a 600 m-long fissure, building an early tuff ring and then two coalescing scoria cones. Strombolian volcanism dominated volumetrically, as the supply of external water was severely limited. Magma/water interaction only occurred during the opening stages of eruption at any vent, when discharge rates were low and the fragmentation surface was below the water table. The phreatomagmatic deposits consist of relatively well-sorted fall beds and only minor surge deposits. They contain juvenile clasts with a wide range of vesicularity and grain size, implying considerable heterogeneity in the assemblage of material ejected by the phreatomagmatic explosions. the transition from phreatomagmatic to Strombolian eruption at any vent was rapid and irreversible, and Strombolian volcanism persisted even when eruption rates are inferred to have waned at the close of each eruptive phase as, by then, the fragmentation surfaces were high in the growing cones and water was denied access to the magma. The Strombolian deposits are relatively homogenous, consisting of alternating coarser- and finer-grained, well-sorted fall beds erupted during periods of open-vent eruption and partial blockage of the vent respectively. The intervals of Strombolian eruption were always a delicate balance between discharge of freely degassing magma and processes such as ponding of degassed magma in the vent, collapse of the growing cones, and repeated recycling of clasts through the vent. Clear evidence of the instability of the Rothenberg cones is preserved in numerous unconformities within deposits of the inner walls of the cones. The close of Strombolian phases was probably marked by a decreasing supply of magma to the vents accompanied by ponding and stagnation of lava in the craters.  相似文献   
9.
10.
The Pleistocene basanite-tephrite Rothenberg cone complex in the East Eifel was constructed by alternating dominantly Strombolian (S1–3) and dominantly phreatomagmatic (P1–3) phases of volcanism along a NNE-SSW linear vent system. Strombolian eruptions, from the central vent of the S1 scoria cone, and phreatomagmatic eruptions, from a vent on the southern margin of the cone, occurred simultaneously during the second phreatomagmatic phase (P2). The P2 deposits are a complex sequence in which Strombolian fallout ejecta is intimately admixed with phreatomagmatic fallout and pyroclastic surge material. Every bed contains at least trace amounts of ejecta from both sources but, at every site, an alternation of Strombolian-dominant and phreatomagmatic-dominant units is recorded. Each bed also shows marked lateral changes with a progressive northward increase in the proportion of Strombolian material. The two eruptive styles produced morphologically distinct clast populations often with widely separated (5–7 φ) grain size modes. The phreatomagmatic component of the P2 deposits is inferred to be the result of shallow interaction of external water and cool, partially degassed magma which reached the surface at a time when the magma column was retreating from the northern Strombolian central vent.The Rothenberg deposits illustrate the complexity and sensitivity of controls on Strombolian and associated phreatomagmatic volcanism, and the shallow depth of fragmentation during such eruptions. During such shallow eruptions minor, ephemeral and localised variations in the rate of rise and discharge of magma, and vent geometry and hydrology significantly influence the magma:water ratio and hence eruptive style.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号