首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
大气科学   5篇
地球物理   5篇
地质学   5篇
天文学   2篇
  2013年   6篇
  2011年   1篇
  2009年   1篇
  2005年   1篇
  2002年   1篇
  2001年   2篇
  1997年   2篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
The fringing reef at Pointe-au-Sable (Mauritius, Indian Ocean) was used to examine the effects of Holocene sea-level rise on coral growth. This reef is about 1000 m wide and comprises a forereef slope (30 m maximum depth), a narrow reef crest and a very shallow backreef (1·5 m maximum depth). Four major coral communities were recognized, which developed within relatively narrow depth ranges: a Pachyseris/Oulophyllia community (deeper than 20 m), an Acropora‘tabulate’Faviid community (20–6 m); a robust branching Acropora community (less than 6 m) and a Pavona community (less than 10m). Three high-recovery cores show the Holocene reef sequence is a maximum of 19·3 m thick and comprises four coral biofacies which are similar to counterparts identified in modern communities: robust branching, tabular-branching, robust branching-domal and foliaceous coral facies. A minimum sea-level curve for the past 7500 years was constructed. Using distribution patterns of coral biofacies and radiocarbon dates from corals, reconstruction of reef growth history indicates that both offshore and onshore reef zones were developing coevally, aggrading at rates of 4·3 mm year?1 from 6900 years B.P. The reef caught up with sea-level only after sea-level stabilized. Changes in coral community and reef growth rates were driven principally by increasing water agitation due to the decrease in accommodation space. Based on the composition of the successive coral assemblages, the reef appears to have grown through successive equilibrium stages.  相似文献   
2.
Drill cores from Holocene reefs on Tahiti (French Polynesia) reveal a framework composed of massive branching acroporids encrusted by coralline algae associated with sessile vermetid gastropods and arborescent foraminifers. Laminated micritic crusts form coatings over coral branches or, more commonly, over related encrusting organisms throughout the cored reef sections; these crusts appear as a major structural and volumetric component of the reef framework. The microbial nature of these micritic crusts is inferred from their typical organic growth forms and geometry, the occurrence of microbial remains and stable isotope measurements. The reef communities accumulated at depths less than 5 m below mean sea level in a high energy environment throughout vertical growth from 7140 ± 170 yr bp to the present. The nature of the involved benthic communities, stable isotope data and high calcification rates of microbially encrusted corals strongly suggest that local environmental conditions have been optimal for reef development for the last 7000 years. The causes of the predominance of microbial communities over actual encrusters (red algae, foraminifers) remain problematic and could be related to short term fluctuations in ecological parameters. Microbial micritic crusts seemingly played a prominent role in protecting the coralgal colonies from bioeroders and grazers and, possibly, in strengthening the framework, due to rapid lithification. The record of similar microbial crusts in other Quaternary reef tracts suggests that microbial communities may have played a more prominent role in Quaternary reefs than presently recognized.  相似文献   
3.
ABSTRACT

The shore of a large and shallow reservoir or lake may incur damages caused by high or low static water level, as well as from dynamic water level rises induced by wind; thus, the random variables representing, respectively, static water level and wind-induced rise must be added. The case study of Lake Balaton, Hungary, illustrates a proposed methodology to estimate, on the one hand, the distribution function of monthly static water level and on the other hand, that of monthly maximum rise caused by wind (seiche plus waves). We consider one section of lake shore which is homogeneous from the viewpoints of types of structure, dominant winds and corresponding values of fetch, so that a well-defined damage function can be used later for that section. A convolution of the two distribution functions is performed to yield the distribution function of monthly maximum water level. On the basis of existing data, normal distributions are suggested for either static or dynamic water levels. Extensions and transferability of the methodology are discussed.  相似文献   
4.
5.
6.
A deep borehole through Ribbon Reef 5 in the Great Barrier Reef off north‐eastern Australia has identified a variety of cements, including epitaxial, radial prismatic and spherular aragonite, together with blocky, prismatic and fibrous calcite. These cements are discontinuously arranged within the sequence that consists predominantly of grainstones but locally includes clotted muddy and filamentous textures that may be of microbial origin. Calcite cements vary in morphology with groups of crystals that include acute scalenohedral, rhombohedral and flattened concordant terminations; these show varying densities of inclusions that locally define growth zones and in some terminations divide in the manner of ‘split crystals’ to form fibrous fringes. Morphological changes in calcite are inferred to reflect changes in water chemistry and crystal growth rates at the time of growth, allied to their relationship to the palaeo‐water table, and linked in turn to changes in sea‐level. Neomorphism and dissolution are widespread and variations in the severity of both imply response to the degree of undersaturation of pore waters that at times were probably balanced within very narrow limits. A total of 10 depositional units are identified. Those units at the base of the borehole reflect deposition and diagenesis within a marine environment. The influence of meteoric waters, indicated by stable isotopes, is first apparent at the top of Unit 1 and in Unit 2 (184 to 155 m below sea floor). Petrographic evidence of vadose conditions appears at the tops of Unit 3 (131 to 99 m below sea floor). Units 4 to 8, all deposited under marine conditions, provide isotopic evidence of meteoric or mixing‐zone waters and petrographic indicators of vadose conditions, typically at the top of the units. Evidence indicates that in Unit 5 the water table was mobile and Units 6a, 6b, 7 and 8, all characterized by ultraviolet fluorescent cements, are capped by sub‐aerial erosion surfaces. Unit 9 (the Holocene) reflects the recent re‐establishment of marine conditions. The extent of alteration of the entire sequence reflects the substantial and pervasive influence of meteoric waters. This effect is interpreted as a result of a greater rainfall and river flow from the mainland during early and late stages of interstadial periods. The study reflects progress in the ability to recognize the diagenetic signal generated by sea‐level change. However, whereas the isotopic results reflect the changing relationships between vadose and phreatic zones in groundwater systems beneath successive emergent surfaces, their correspondence with petrographic features is expressed only weakly and commonly lacks the systematic sequential overprinting implied by the distribution of cathodoluminescent zones of cements in many ancient limestones.  相似文献   
7.
Abstract

An understanding of hydrology is a prerequisite for ensuring the successful management, conservation and restoration of wetland environments. Frequently, however, little is known about historical hydrological conditions, such as water levels, within wetlands. Moreover, many channel and ditch systems in wetlands are not routinely monitored, except perhaps for research purposes. A methodology is presented herein which makes use of satellite imagery to indirectly provide remotely sensed observations of water levels within channels and ditches. Using multi-temporal Landsat Thematic Mapper (TM) imagery and simultaneous ground-based measurements of water levels, statistical relationships are established between satellite-derived effective wet ditch widths and measured water levels in the drainage system of the Elmley Marshes, southeast England. These relationships can be used subsequently to estimate historical ditch water levels and to monitor contemporary ditch water levels in the wetland. The study shows that satellite imagery has much to offer in monitoring changes in the hydrological regime of wetlands and in providing complimentary approaches to field monitoring.  相似文献   
8.
Abstract

An attempt was made to compensate for the lack of long hydrological time series and the lack of information on maximum streamflow in the Alzette River basin (Luxembourg) via the regionalization of stormflow coefficients. Streamflow data recorded since 1995 with a very dense streamgauge network allowed the determination of maximum stormflow coefficients in 18 sub-basins of the Alzette. The stormflow coefficients were then regionalized via stepwise multiple regression analysis for 83 different sub-basins of the Alzette. Combined with 10-year daily rainfall heights (statistical estimation), this regionalization allowed the spatial variability of storm runoff in the Alzette basin to be mapped, thus providing a view of hazard and risk-producing areas, as well as of risk-exposed areas. In a basin with little historical hydrological information this technique can help identify areas where storm runoff reducing measures should be applied from the outset.  相似文献   
9.
An attempt is made to reconstruct the palaeoenvironmental Holocene history at the timberline on the basis of the analysis of various palaeoecological proxy indicators available on a marshy area and its surroundings in the Taillefer Massif (Isère. France). The multidisciplinary approach involves analyses of pollen assemblages. plant macrofossils, coleoptera remains. subfossil trunks extracted from lakes or peat-bogs. and charcoals derived from the surrounding soils. This enables definition of the respective roles of five forest taxa ( Pinus uncinata Mill., Pinus cembra L., Larix decidua Mill., Abies alba Mill, and Picea abies L. Karsten) in the evolution of high altitude forests during the Holocene. Pinus uncinata was present on the plateau throughout the Holocene. Larix and Pinus cembra were present only during two periods: 7500-5000 BP and 3500-2000 BP. All trees disappeared from the plateau at about 2000 BP, while, at lower altitude. Abies was replaced by Picea. The action of both climate and early human impact can explain these changes.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号