首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   0篇
测绘学   7篇
大气科学   5篇
地球物理   15篇
地质学   15篇
天文学   5篇
自然地理   3篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   5篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   5篇
  2011年   1篇
  2010年   3篇
  2009年   3篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1981年   1篇
  1979年   2篇
  1977年   1篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
1.
Groundwater in India plays an important role to support livelihoods and maintain ecosystems and the present rate of depletion of groundwater resources poses a serious threat to water security. Yet, the sensitivity of the hydrological processes governing groundwater recharge to climate variability remains unclear in the region. Here we assess the groundwater sensitivity (precipitation–recharge relationship) and its potential resilience towards climatic variability over peninsular India using a conceptual water balance model and a convex model, respectively in 54 catchments over peninsular India. Based on the model performance using a comprehensive approach (Nash Sutcliffe Efficiency [NSE], bias and variability), 24 out of 54 catchments are selected for assessment of groundwater sensitivity and its resilience. Further, a systematic approach is used to understand the changes in resilience on a temporal scale based upon the convex model and principle of critical slowing down theory. The results of the study indicate that the catchments with higher mean groundwater sensitivity (GWS) encompass high variability in GWS over the period (1988–2011), thus indicating the associated vulnerability towards hydroclimatic disturbances. Moreover, it was found that the catchments pertaining to a lower magnitude of mean resilience index incorporates a high variability in resilience index over the period (1993–2007), clearly illustrating the inherent vulnerability of these catchments. The resilience of groundwater towards climatic variability and hydroclimatic disturbances that is revealed by groundwater sensitivity is essential to understand the future impacts of changing climate on groundwater and can further facilitate effective adaptation strategies.  相似文献   
2.
The present study has analyzed the variability in depth to water level below ground level (bgl) vis-à-vis groundwater development and rainfall from 1987 to 2007 in agriculture dominated Kaithal district of Haryana state in India. Spatial distribution of groundwater depth was mapped and classified into different zones using ILWIS 3.6 GIS tools. Change detection maps were prepared for 1987–1997 and 1997–2007. Groundwater depletion rates during successive decades were compared and critical areas with substantial fall in groundwater levels were identified. Further, block wise trends of change in groundwater levels were also analyzed. The water table in fresh belt areas of the district (Gulha, Pundri and Kaithal blocks) was observed to decline by a magnitude ranging from 10 m to 23 m. In Kalayat and Rajaund blocks, the levels were found fluctuating in a relatively narrow range of 4–9 m. During 1997–2007, the depletion has been faster compared to the preceding decade. Excessive groundwater depletion in major part of the district may be attributed to indiscriminate abstraction for irrigation and decrease in rainfall experienced since 1998. Changes in cropping pattern and irrigation methods are needed in the study area for sustainable management of the resource.  相似文献   
3.
The present study explores the effectiveness of Saraca indica leaf powder, a surplus low value agricultural waste, in removing Pb ions from aqueous solution. The influence of pH, biomass dosage, contact time, particle size and metal concentration on the removal process were investigated. Batch studies indicated that maximum biosorption capacity for Pb was 95.37% at the pH 6.5. The sorption process followed the first order rate kinetics. The adsorption equilibrium data fitted best to both Langmuir and Freundlich isotherms. Morphological changes observed in scanning electron micrographs of untreated and metal treated biomass confirmed the phenomenon of biosorption. Fourier transform infrared spectroscopy of native and exhausted leaf powder confirmed lead biomass interactions responsible for sorption. Acid regeneration was tried for several cycles with a view to recover the sorbed metal ion and also to restore the sorbent to its original state. The findings showed that Saraca indica leaf powder can easily be envisaged as a new, vibrant, low cost biosorbent for metal clean up operations.  相似文献   
4.
Increased construction of coastal canal communities had led to a deterioration of the water quality in the canals. In addition to being used for recreational activities, the canals serve as a dumping place for domestic sewage from these communities. This study was conducted to determine the prevalence of transferable drug-resistant (R+) bacteria in six coastal canals. A significantly higher number of R+ bacteria (both pathogenic and nonpathogenic) occurred in the bottom sediments than in the overlaying water. These sediments can be resuspended following rain, dredging, storms, boating, and diving, thus releasing their bacterial populations into the overlaying water.  相似文献   
5.
Annual variations of mixed-layer characteristics at New Delhi, India have been studied for a weak monsoon (1987) and a strong monsoon (1988) year. In the weak monsoon year (1987), the maximum mixing depthh max was found to have a value of around 3000 m during the pre-monsoon, less than 2000 m during the summer monsoon, around 2000 m during the post-monsoon, and less than 1000 m in the winter season. For the strong monsoon year (1988),h max values were less than 1987 values for comparable periods throughout the year. The seasonal and yearly differences ofh max were explained by the surface energy balance and potential temperature gradient at a time close to sunrise. According to the spatial patterns of obtained by an objective analysis of the 850 to 700 hPa layers. mixed-layer characteristics obtained at New Delhi are representative of the north and central regions of India.  相似文献   
6.
The early thermal evolution of Moon has been numerically simulated to understand the magnitude of the impact-induced heating and the initially stored thermal energy of the accreting moonlets. The main objective of the present study was to understand the nature of processes leading to core–mantle differentiation and the production and cooling of the initial convective magma ocean. The accretion of Moon was commenced over a time scale of 100 yr after the giant impact event around 30–100 million years in the early solar system. We studied the dependence of the planetary processes on the impact scenarios, the initial average temperature of the accreting moonlets, and the size of the protomoon that accreted rapidly beyond the Roche limit within the initial 1 yr after the giant impact. The simulations indicate that the accreting moonlets should have a minimum initial averaged temperature around 1600 K. The impacts would provide additional thermal energy. The initial thermal state of the moonlets depends upon the environment prevailing within the Roche limit that experienced episodes of extensive vaporization and recondensation of silicates. The initial convective magma ocean of depth more than 1000 km is produced in the majority of simulations along with the global core–mantle differentiation in case the melt percolation of the molten metal through porous flow from bulk silicates was not the major mode of core–mantle differentiation. The possibility of shallow magma oceans cannot be ruled out in the presence of the porous flow. Our simulations indicate the core–mantle differentiation within the initial 102 to 103 yr of the Moon accretion. The majority of the convective magma ocean cooled down for crystallization within the initial 103 to 104 yr.  相似文献   
7.
The main source to fulfill the enormous needs of water both for domestic and agricultural purposes in the densely cultivated region of Yamuna Nagar district of Haryana (India) is the water under earth. Since enough quantity of good quality water has been readily available, the water quality concerns are often neglected. In the present study analysis of the geochemical characteristics of groundwater to assess its suitability for domestic and irrigation purposes has been done. Fifty-five samples were collected in the months of June (pre-monsoon) and October (post-monsoon) from the bore wells. These samples were analysed for various parameters and were compared with various national and international standards to determine the suitability of water for domestic and irrigation use. The thematic maps for hydrogen ion concentration (pH), total dissolved solids (TDS), total hardness (TH), electric conductivity (EC), sodium adsorption ratio (SAR), percent sodium (Na%) and residual sodium carbonate (RSC) were prepared in GIS environment. These maps were further classified as per given standards to study the spatial variations of quality parameters and their suitability for drinking and irrigation purposes. Investigations revealed that groundwater in general was hard for domestic use. However it was within the safe limits for drinking. Furthermore groundwater quality was well within the desirable to permissible limits for irrigation purpose.  相似文献   
8.
We present the result of our extensive intranight optical monitoring of the well-known low-energy peaked BL Lac (LBL) object PKS 0735+178. This long-term follow-up consists of R -band monitoring for a minimum duration of ∼4 hours, on 17 nights spanning 11 years (1998–2008). Using the CCD as an N-star photometer, a detection limit of around 1 per cent was attained for the intranight optical variability (INOV). Remarkably, an INOV amplitude of  ≥3 per cent  on hour-like time-scale was not observed on any of the 17 nights, even though the likelihood of a typical LBL showing such INOV levels in a single session of  ≳4  hours duration is known to be high  (∼50 per cent)  . Our observations have thus established a peculiar long-term INOV quiescence of this radio-selected BL Lac object. Moreover, the access to unpublished optical monitoring data of similarly high sensitivity, acquired in another programme, has allowed us to confirm the same anomalous INOV quiescence of this LBL all the way back to 1989, the epoch of its historically largest radio outburst. Here, we present observational evidence revealing the very unusual INOV behaviour of this classical BL Lac object and discuss this briefly in the context of its other known exceptional properties.  相似文献   
9.
Many impact studies require climate change information at a finer resolution than that provided by global climate models (GCMs). This paper investigates the performances of existing state-of-the-art rule induction and tree algorithms, namely single conjunctive rule learner, decision table, M5 model tree, and REPTree, and explores the impact of climate change on maximum and minimum temperatures (i.e., predictands) of 14 meteorological stations in the Upper Thames River Basin, Ontario, Canada. The data used for evaluation were large-scale predictor variables, extracted from National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis dataset and the simulations from third generation Canadian coupled global climate model. Data for four grid points covering the study region were used for developing the downscaling model. M5 model tree algorithm was found to yield better performance among all other learning techniques explored in the present study. Hence, this technique was applied to project predictands generated from GCM using three scenarios (A1B, A2, and B1) for the periods (2046–2065 and 2081–2100). A simple multiplicative shift was used for correcting predictand values. The potential of the downscaling models in simulating predictands was evaluated, and downscaling results reveal that the proposed downscaling model can reproduce local daily predictands from large-scale weather variables. Trend of projected maximum and minimum temperatures was studied for historical as well as downscaled values using GCM and scenario uncertainty. There is likely an increasing trend for T max and T min for A1B, A2, and B1 scenarios while decreasing trend has been observed for B1 scenarios during 2081–2100.  相似文献   
10.
Natural Hazards - Glacial lakes are rapidly growing in response to climate change and glacier retreat which may lead to catastrophic socio-economic disasters. The failure of moraine-dammed lakes is...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号