首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   0篇
测绘学   4篇
地球物理   5篇
地质学   22篇
海洋学   2篇
天文学   5篇
综合类   4篇
  2023年   1篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2016年   10篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2003年   1篇
  2002年   1篇
  1982年   1篇
排序方式: 共有42条查询结果,搜索用时 281 毫秒
1.
2.
The drainage basin of the Kalyani river, a tributary of Gomati river has been mapped and delineated using Survey of India toposheets (1:50,000 scale) and remote sensing satellite data. The digitization, slope map preparation and statistical calculations have been carried out with the help of geographical information system (Arc GIS 10). Kalyani a fifth order river exhibits meandering behavior having 2.45 sinuosity index (SI). The Kalyani river basin has about 1235 km2area with NW-SE sloping trend. The total number of first, second, third, and fourth order streams are 373, 71, 12 and 2 respectively, showing dominance of first order streams in the basin. The mean bifurcation ratio (Rb) of the entire basin is 4.8, which indicates that the drainage is not much influenced by geological structures and exhibits dendritic drainage pattern. Relief ratio (Rr) indicates low to medium surface run-off, and low stream power for erosion. The analysis of river bank height ‘r’ (escarpment) and longitudinal profile of the river closely reveals neotectonic activity at some locations in the basin. To prepare a comprehensive watershed development and management plan, it is important to understand the topography and drainage characteristics of the region.  相似文献   
3.
The paper presents a fast automatic approach to solve the inverse resistivity problem, assisted by optimization, which is a non-linear model-fitting technique. The selected inverse problems are ill-posed and the inverse solution is defined by ‘best fit’ in the sense of least-squares. Formulations are presented in a systematic manner for Newton’s method, least squares method and Marquardt’s modification (ridge regression) method based on local linearization of non-linear problem. The convergence of least-squares method and Marquardt’s method, to provide a robust solution, are first tested on a theoretical model and effectiveness of Marquardt’s method is demonstrated, and then two-field apparent resistivity curves from Banda district, India are interpreted and discussed.  相似文献   
4.
The voluminous gravity and magnetic data sets demand automatic interpretation techniques like Naudy, Euler and Werner deconvolution. Of these techniques, the Euler deconvolution has become a popular choice because the method assumes no particular geological model. However, the conventional approach to solving Euler equation requires tentative values of the structural index preventing it from being fully automatic and assumes a constant background that can be easily violated if the singular points are close to each other. We propose a possible solution to these problems by simultaneously estimating the source location, depth and structural index assuming nonlinear background. The Euler equation is solved in a nonlinear fashion using the optimization technique like conjugate gradient. This technique is applied to a published synthetic data set where the magnetic anomalies were modeled for a complex assemblage of simple magnetic bodies. The results for close by singular points are superior to those obtained by assuming linear background. We also applied the technique to a magnetic data set collected along the western continental margin of India. The results are in agreement with the regional magnetic interpretation and the bathymetric expressions.  相似文献   
5.
On farm bio-resource recycling has been given greater emphasis with the introduction of conservation agriculture specifically withclimate change scenarios in the mid-hills of the north-west Himalaya region(NWHR). Under this changing scenario, elevation, slope aspect and integrated nutrient management(INM) may affect significantly soil quality and crop productivity. A study was conducted during 2009-2010 to 2010-2011 at the Ashti watershed of NWHR in a rainfed condition to examine the influence of elevation, slope aspect and integrated nutrient management(INM) on soil resource and crop productivity. Two years of farm demonstration trials indicated that crop productivity and soil quality is significantly affected by elevation, slope aspect and INM. Results showed that wheat equivalent yield(WEY) of improved technology increased crop productivity by -20%-37% compared to the conventional system. Intercropping of maize with cowpea and soybean enhanced yield by another 8%-17%. North aspect and higher elevation increased crop productivity by 15%-25% compared to south aspect and low elevation(except paddy). Intercropping of maize with cowpea and soybean enhanced yield by another 8%-15%. Irrespective of slope, elevation and cropping system, the WEY increased by -30% in this region due to INMtechnology. The influence of elevation, slope aspect and INM significantly affected soil resources(SQI) and soil carbon change(SCC). SCC is significantly correlated with SQI for conventional(R2 = 0.65*), INM technology(R2 = 0.81*) and for both technologies(R2 = 0.73*). It is recommended that at higher elevation.(except for paddy soils) with a north facing slope, INM is recommended for higher crop productivity; conservation of soil resources is recommended for the mid hills of NWHR; and single values of SCC are appropriate as a SQI for this region.  相似文献   
6.
Rainwater plays an important role in scavenging of aerosols and gases from atmosphere, and its chemistry helps to understand the relative contributions of atmospheric pollution sources. The present work is aimed to understand and explain the sources, seasonal patterns and the processes thereof affecting rainwater chemistry in an urban environment of Delhi, India. Rainwater samples (n = 111) collected throughout the year in New Delhi showed alkalinity in general. Eight rainwater samples, collected in late monsoon and winter season, had pH less than 5.6 indicating that Delhi continues to face the prospects of acid rain despite the introduction of compressed natural gas as the clean fuel in city transport. Organic acids could be the possible contributors of acidity in rainwater samples having the fractional acidity (FA) value of 0.174, which is greater than the annual average FA (0.011) and the (Ca2+ + Mg2+ + NH4 +)/(SO4 2? + NO3 ?) ration of more than one. Average acid neutralization factors of cations decrease in the order Ca2+ (1.01) > NH4 + (0.77) > Mg2+ (0.10). However, neutralization by Ca2+ dominates only in summer season as cation-rich dust is transported from the Great Indian Thar Desert to this region by strong summer S–SW winds, while NH4 + dominates in rainwater of other three sampling seasons. Identified dominant sources for soluble ions in rainwater are (1) non-silicate crustal source for carbonates and sulfates of Ca and Mg, (2) emissions from catalytic convertor-fitted vehicles and agriculture fields for NH3 and (3) mixed anthropogenic sources for SO4 2?, NO3 ? and Cl?. Rainwater chemistry showed significant seasonal variations. This could be due to the changes in relative proportions of natural and anthropogenic sources of soluble ions to rainwater. Dominance of anthropogenic sources over crustal sources can result in acidic rains, which can adversely affect the environment and human health in this region.  相似文献   
7.
With the growing recognition to myriad forms of current and future threats in the mountain agriculture systems,there is a pressing need to holistically understand the vulnerability of mountain agriculture communities.The study aims to assess the biophysical and social vulnerability of agriculture communities using an indicator-based approach for the state of Uttarakhand,India.A total of 14 indicators were used to capture biophysical vulnerability and 22 for social vulnerability profiles of15285 villages.Vulnerability analysis was done at village level with weights assigned to each indicator using Analytical Hierarchical Process(AHP).The results of the study highlight the presence of very high biophysical vulnerability(0.82 ± 0.10) and high social vulnerability(0.65 ± 0.15) within the state.Based on the results,it was found that incidences of high biophysical vulnerability coincide with presence of intensified agriculture land and absence of dense forest.Higher social vulnerability scores were found in villages with an absence of local institutions(like Self Helping Groups(SHGs)),negligible infrastructure facilities and higher occupational dependence on agriculture.A contrast was observed in the vulnerability scores of villages present in the three different altitudinal zones in the study area,indicating respective vulnerability generating conditions existing in these three zones.Biophysical vulnerability was recorded to be highest in the villages falling in the lower zone and lowest in the upper zone villages;whereas,social vulnerability was found to be highest in the middle zone villages and lowest in lower zone villages.Our study aids policy makers in identifying areas for intervention to expedite agriculture adaptation planning in the state.Additionally,the adaptation programmes in the region need to be more context-specific to accommodate the differential altitudinal vulnerability profiles.  相似文献   
8.
Air temperature and snow cover variability are sensitive indicators of climate change. This study was undertaken to forecast and quantify the potential streamflow response to climate change in the Jhelum River basin. The implications of air temperature trends (+0.11°C/decade) reported for the entire north-west Himalaya for past century and the regional warming (+0.7°C/decade) trends of three observatories analyzed between last two decades were used for future projection of snow cover depletion and stream flow. The streamflow was simulated and validated for the year 2007-2008 using snowmelt runoff model (SRM) based on in-situ temperature and precipitation with remotely sensed snow cover area. The simulation was repeated using higher values of temperature and modified snow cover depletion curves according to the assumed future climate. Early snow cover depletion was observed in the basin in response to warmer climate. The results show that with the increase in air temperature, streamflow pattern of Jhelum will be severely affected. Significant redistribution of streamflow was observed in both the scenarios. Higher discharge was observed during spring-summer months due to early snowmelt contribution with water deficit during monsoon months. Discharge increased by 5% 40% during the months of March to May in 2030 and 2050. The magnitude of impact of air temperature is higher in the scenario-2 based on regional warming. The inferences pertaining to change in future streamflow pattern can facilitate long term decisions and planning concerning hydro-power potential, waterresource management and flood hazard mapping in the region.  相似文献   
9.
The paper deals with the application of Remote Sensing and Geographical Information System (GIS) technique for a watershed development program. For this study, the WRJ-2 watershed falling under Narkhed and Katol Tahsils of Nagpur district, Maharashtra, India is investigated. Various thematic maps (i.e. drainage, geology, soil, geomorphology and land use/ land cover) have been prepared using the remote sensing and GIS techniques. Initially, differential weightage values are assigned to all the thematic maps as per their runoff characteristics. Subsequently, the maps are integrated in GIS environment to identify potential sites for water conservation measures like gully plugs, earthen check dams, continuous contour trenches, percolation tanks, cement bandhara, afforestration and farm ponds, etc. The study depicts that the GIS technique facilitates integration of thematic maps and thereby helps in an identification of micro-zones each with unique characters in-terms of hydrogeology, thus amenable to specific water conservation techniques. It is therefore concluded that, the GIS technique is suitable for an identification of water conservation structures.  相似文献   
10.
The review paper provides an updated account of the previous and recently published records concerning the palaeobiology and the geology of the Talcher Basin of Orissa State, India. We conclude that fossil floral species in this basin originated in the earliest Permian Talchir Formation and evolved and diversified through the Karharbari Fm., Barakar Fm., Barren Measures Fm. and the uppermost Kamthi Fm. (Late Permian–Triassic). The megaflora and the palynology of the different formations of the basin are also discussed briefly. The geological setting of the basin along with the status of different formations (especially the Kamthi Formation) has been redefined. The post‐Barakar Fm. rocks, earlier retained in the Raniganj/Kamthi, Panchet and Mahadeva formations in this basin, have been critically assessed and redefined as the Lower and Upper Kamthi formations of Late Permian and Triassic ages, respectively. Accordingly, the geological map of the basin has been modified. Permian deposits (particularly the Barakar and the lower Kamthi formations) not only have the best preserved flora but also possess the highest diversity, whereas the upper Kamthi Triassic sediments have a meagre number of taxa. The plant diversity of the basin has been discussed in detail to interpret the development of the flora, evolutionary trends and palaeoenvironments of the basin. The patchy Gangamopteris vegetation of the Talchir glacial phase has ultimately evolved and diversified through time (Karharbari Fm. to Lower Kamthi Fm.) and gave rise to the thick dense swampy forests consisting of large Glossopteris trees and other shade‐loving under‐storied pteridophytes. Several groups of plants including spores and pollen have disappeared in a ladder pattern during the Permian–Triassic interval (Lower Kamthi–Upper Kamthi Fm.) and, similarly, in steps, many new fore‐runners appeared in the Upper Kamthi Formation. Records of marine acritarchs and ichnofossils in this basin at various Permian–Triassic levels demonstrate that there were marine influences. These features suggest a paralic (coastal marine to deltaic) mode of origin of the coal beds and associated sediments in the basin. The present study also advocates the continued survival of plants, rather than a mass extinction near the vicinity of the Permian–Triassic (P–T) boundary in this basin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号