首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   2篇
大气科学   1篇
地球物理   3篇
  2023年   1篇
  2014年   2篇
  2013年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The integrated steel industry is considered as one of the important industrial sectors, and its outputs are inputs for other sectors including construction, engineering, medical and scientific equipment, and defence. Massive production, consumption, and export of steel signify a country's economic index. This review outlines the World's steel production quantities, the processes involved, and wastewater generation from the industry and its treatment. Wastewater generated from steel plants is highly complex and requires intensive treatment before discharge into natural water bodies. Technologies adopted for treating wastewater generated from steel industries are deliberated, focusing on coking wastewater treatment. Microbial mediated processes provide an effective means of degrading the contaminants, but the toxicity of certain compounds during higher pollutant load inhibits its further treatment. However, these processes can be integrated with either electrochemical technologies or advanced oxidation processes (AOPs), which can reduce the toxicity level. Hence, when a highly concentrated and complex mixture of contaminants is considered, an integrated approach is a resourceful option in terms of cost-effectiveness and treatment efficiency.  相似文献   
2.
In this study, we analysed decadal and long-term steric sea level variations over 1966–2007 period in the Indo-Pacific sector, using an ocean general circulation model forced by reanalysis winds. The simulated steric sea level compares favourably with sea level from satellite altimetry and tide gauges at interannual and decadal timescales. The amplitude of decadal sea level variability (up to ~5 cm standard deviation) is typically nearly half of the interannual variations (up to ~10 cm) and two to three times larger than long-term sea level variations (up to 2 cm). Zonal wind stress varies at decadal timescales in the western Pacific and in the southern Indian Ocean, with coherent signals in ERA-40 (from which the model forcing is derived), NCEP, twentieth century and WASWind products. Contrary to the variability at interannual timescale, for which there is a tendency of El Niño and Indian Ocean Dipole events to co-occur, decadal wind stress variations are relatively independent in the two basins. In the Pacific, those wind stress variations drive Ekman pumping on either side of the equator, and induce low frequency sea level variations in the western Pacific through planetary wave propagation. The equatorial signal from the western Pacific travels southward to the west Australian coast through equatorial and coastal wave guides. In the Indian Ocean, decadal zonal wind stress variations induce sea level fluctuations in the eastern equatorial Indian Ocean and the Bay of Bengal, through equatorial and coastal wave-guides. Wind stress curl in the southern Indian Ocean drives decadal variability in the south-western Indian Ocean through planetary waves. Decadal sea level variations in the south–western Indian Ocean, in the eastern equatorial Indian Ocean and in the Bay of Bengal are weakly correlated to variability in the Pacific Ocean. Even though the wind variability is coherent among various wind products at decadal timescales, they show a large contrast in long-term wind stress changes, suggesting that long-term sea level changes from forced ocean models need to be interpreted with caution.  相似文献   
3.
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号