首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
地球物理   1篇
地质学   3篇
综合类   1篇
自然地理   3篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2016年   1篇
  2014年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
基于MODIS积雪产品的高亚洲融雪末期雪线高度遥感监测   总被引:4,自引:0,他引:4  
以2001—2016年逐日MODIS积雪产品为主要数据源,在高亚洲区域发展了大尺度融雪末期雪线高度的遥感提取方法,并对其2001—2016年的时空变化特征进行了分析。提取方法首先对逐日的MODIS积雪覆盖率产品进行去云处理,获得积雪覆盖日数(SCD)数据集;并用冰川年物质平衡观测数据、融雪末期Landsat数据对提取终年积雪的MODIS SCD阈值进行率定;最后以MODIS SCD提取的终年积雪面积结合地形“面积—高程”曲线实现大尺度融雪末期雪线高度信息的提取。结果表明:① 高亚洲融雪末期雪线高度的空间异质性较强,总体上呈南高北低的纬度地带性分布规律;并因受山体效应的影响,雪线高度由高海拔地区向四周呈环形逐渐降低的特点。② 高亚洲2001—2016年融雪末期雪线高度总体上表现为明显的增加趋势。在744个30 km的监测格网中,24.2%的格网雪线高度呈显著增加,而仅0.9%的格网呈显著下降。除兴都库什、西喜马拉雅外,其他地区雪线高度均表现为升高趋势,显著上升的地区主要分布在天山、喜马拉雅中东部和念青唐古拉山等,其中以东喜马拉雅升高最为显著(8.52 m yr -1)。③ 夏季气温是影响高亚洲融雪末期雪线高度变化的主要因素,两者具有显著的正相关关系(R = 0.64,P < 0.01)。  相似文献   
2.
堤坝稳定性是评价冰湖溃决危险性的重要指标, 而堤坝的温度特征与其稳定性密切相关. 基于2012年11月-2013年9月对西藏定结县龙巴萨巴湖冰碛坝的0~150 cm不同深度的温度观测数据, 分析冰碛坝地温变化特征及其影响. 结果显示: 冰碛坝表层(<20 cm)地温与气温变化一致, 温度日变化常出现白天为正温梯度而夜间为负温度梯度的特征, 全年日均梯度一般为负温梯度(上部温度高、下部温度低); 中层(20~100 cm)和深层(>100 cm)表现为冬季下层温度高于上层温度的正温梯度, 夏季下层温度低于上层的负温梯度逐渐加强, 但地温日变幅逐渐减弱; 中间层地温变化不到气温变化幅度的1/5~1/10; 深层地温无明显的日变化. 冰碛坝的消融率约为2.1 cm·d-1, 夏季消融深度超过250 cm. 现有夏季消融深度对堤坝的稳定影响有限, 但是湖盆区如果持续升温, 冰碛坝冻土的年消融率和消融深度都将增大, 致使堤坝稳定性下降, 溃决风险增大.  相似文献   
3.
基于3S技术方法的中国冰湖编目   总被引:1,自引:0,他引:1  
通过研制一整套基于3S技术的冰湖编目规范与方法,以159景Landsat8 OLI遥感影像为基础,结合中国第二次冰川编目数据与Google Earth中的影像数据等,通过人工目视解译获取冰湖边界,首次完成了基于统一规范的中国冰湖编目数据库建设,查清了2015±1~2年中国冰湖的整体分布状态。结果显示,当前中国共有冰湖17300个,总面积1132.83±147.449 km2,其中冰川补给湖约占中国冰湖总面积的74.6%和总数量的66.5%。并且冰湖数量与面积分布的空间差异十分显著。流域上,外流区冰湖广泛发育,其中恒河—雅鲁藏布江流域是中国冰湖分布最多的流域,现有冰湖7898个,面积约622.42±75.55 km2,分别占中国冰湖总量的45.7%和54.9%;海拔上,中国冰湖分布于2167~6247 m的海拔范围内,各山脉的冰湖面积呈近似正态分布,总体在5000~5500 m处达到峰值,占总面积的36.7%(975.06±128.83 km2);但各个山脉的分布差异显著,其中念青唐古拉山、喜马拉雅山的冰湖分布最为集中,分别占中国冰湖总面积的28.3%和26.4%。  相似文献   
4.
青藏高原地形复杂,积雪时空分布异质性较强且大部分地区积雪较薄,而被动微波遥感因其空间分辨率低以及雪深反演中的不确定性,极大地限制了其反演青藏高原雪深的精度。本文尝试将多源遥感数据以及与积雪模型(SnowModel)相结合,来重建更高质量的青藏高原雪深数据。首先,利用MODIS积雪面积比例产品,根据构建的积雪衰减曲线以及经验的融合规则对低分辨率被动微波雪深进行了降尺度;然后,结合MODIS/被动微波融合雪深数据和SnowModel对研究区进行雪深数据同化实验;最后,利用地面站实测雪深数据对MODIS/被动微波融合雪深以及同化输出雪深的精度进行了分析和对比。结果表明,基于数据同化方法得到的雪深数据更接近地面观测雪深值,通过均方根误差以及相关系数的对比,同化雪深结果优于MODIS/被动微波融合雪深结果。  相似文献   
5.
连续性分类系统的适用性与数据匮乏是过去青藏高原多年冻土制图的两个主要问题.文章基于高海拔多年冻土稳定性分类体系,在模型对比基础上,利用支持向量回归模型集合模拟了划分多年冻土稳定性的年平均地温,生产了空间分辨率为1km的青藏高原多年冻土稳定性分布图.制图中使用了青藏高原2005~2015年间共237个钻孔年平均地温(年变化深度处温度)观测数据,利用统计学习方法融合了地面观测与遥感冻结指数、融化指数、积雪日数、叶面积指数、土壤容重、高程和高质量的土壤水分再分析资料.该图显示,青藏高原多年冻土面积约115.02(105.47~129.59)×104km2,其中,极稳定型(?0.5℃)多年冻土面积分别为0.86×104、9.62×104、38.45×104、42.29×104和23.80×104km2,分别占青藏高原多年冻土的0.75%、8.36%、33.43%、36.77%和20.69%.以模拟的多年冻土稳定性分布图为基础,定义了划分多年冻土稳定型的遥感年平均地表温度和冻结数标准,这两个标准对于多年冻土稳定型的划分结果一致性分别达到69.6%和75.3%,对于多年冻土范围划分的一致性分别达到了90.1%和91.8%.  相似文献   
6.
以亚洲高山区为研究区,在对2000—2020年逐日MODIS积雪产品进行去云处理的基础上提取了每一水文年的积雪日数(snow-covered days, SCD)、积雪开始日期(snow onset date, SOD)、积雪结束日期(snow end date, SED)和积雪持续日数(snow duration days, SDD)等积雪物候参数,并分析了积雪物候时空动态特征及其与气候变化的响应关系。结果表明:亚洲高山区积雪物候空间差异较大,并呈现出主要受海拔影响的垂直地带性分布规律。研究区SED主要集中在3—6月,在低海拔区SED出现在3月份及以前,而高海拔山区则推迟到6月份及以后;SOD主要集中在9—12月,高海拔山脉及高纬度地区的SOD出现较早,而低海拔区的SOD多出现在11月及以后。近20年,研究区SDD主要呈缩短趋势,在13.5%的区域呈显著缩短,而仅7.4%的区域为显著延长;SED主要呈提前趋势,在15.8%的区域显著提前,而仅8.8%的区域为显著推迟;SOD主要呈推迟趋势,在11.4%的区域表现为显著推迟,在8.2%的区域为显著提前。亚洲高山区积雪物候年际变化对气候变化的响应关系明显,积雪累积期气温是影响SOD年际变化的主导因子,而融雪期气温是影响SED年际变化的主导因子;气温的上升,导致了SOD的推迟、SED的提前和SDD的缩短。  相似文献   
7.
喀喇昆仑山区冰川由于存在正物质平衡或跃动、前进现象,被称之为“喀喇昆仑异常”,不过该地区冰川变化差异显著,尤其是大型表碛覆盖冰川,呈现与其他类型冰川明显的差异性响应,为理解喀喇昆仑冰川异常的机理,冰川尺度的详细变化研究十分必要。音苏盖提冰川位于喀喇昆仑山乔戈里峰北坡,是中国面积最大的冰川,是典型的大型表碛覆盖冰川。通过应用TanDEM-X/TerraSAR-X(2014年2月)与SRTM-X DEM(2000年2月)的差分干涉测量方法计算音苏盖提冰川表面高程变化,并结合冰川表面流速对冰川表面高程变化和跃动进行分析和讨论。结果表明:2000—2014年音苏盖提冰川表面高程平均下降了1.68±0.94 m,即冰川整体厚度在减薄,年变化率为-0.12±0.07 m·a-1。冰川表面高程变化分布不均,其中南分支(S)冰流冰川整体减薄较为显著,冰川南分支冰流运动速度较快,前进/跃动的末端占据了冰川的主干,阻滞原主干冰川物质的向下运移(跃动),导致原主干冰舌表面高程上升;冰川厚度减薄随着海拔升高先下降后保持稳定,同时呈现一定的波动性;低海拔表碛区域消融大于裸冰区,可能存在较薄表碛,因热传导高、覆盖大量冰面湖塘和冰崖存在,加速了冰川消融;在坡度小于30 °的区域,冰川厚度减薄随着坡度的减小而加剧;坡向朝南冰川厚度略微增加(0.01 m),西南坡向冰川厚度略微减薄(-0.03 m),其他坡向冰川厚度减薄明显。近14 a来,表碛覆盖的音苏盖提冰川表面高程整体下降表明物质处于亏损状态,冰川跃动导致局部冰川表面高程的增加。  相似文献   
8.
亚洲高山区融雪末期雪线高度空间差异的影响因素分析   总被引:1,自引:1,他引:0  
王晓茹  唐志光  王建  邓刚  王欣  魏俊锋 《冰川冻土》2019,41(5):1173-1182
以亚洲高山区2001-2016年基于MODIS积雪产品提取的30 km格网融雪末期雪线高度数据集(744个格网)及气象再分析资料为主要数据源,采用克里金插值、空间变异函数、回归分析和相关分析等方法分析了亚洲高山区融雪末期雪线高度的空间分布规律及空间异质性,并定量分析了其主要影响因素。结果表明:亚洲高山区融雪末期雪线高度空间分布存在较强的异质性,青藏高原内部雪线高度较高(5 967 m)且空间变化梯度较小,北部的阿尔泰山、天山雪线高度较低(< 4 500 m),西部地区雪线高度等值线分布最为密集。在30 km格网尺度上,亚洲高山区融雪末期雪线高度具有明显的空间自相关性,空间自相关距离约为1 550 km。纬度、经度和海拔对亚洲高山区融雪末期雪线高度的相对贡献率分别为60.5%、2.6%和36.9%,而在不同子区域其相对贡献率存在差异。夏季气温是影响亚洲高山区融雪末期雪线高度的主导因素,45.6%的格网主要受夏季气温的影响,而且在不同区域均有分布;以年降水量为主要影响因素的格网约占18%,主要分布在喀喇昆仑和帕米尔等区域;仅10%的格网主要受年辐射量的影响。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号