首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   2篇
  2019年   1篇
  2017年   1篇
排序方式: 共有2条查询结果,搜索用时 5 毫秒
1
1.
三维剖面地质界线是构建三维地质结构模型的重要基础数据,其不确定性会影响三维模型的几何形态和属性分布。以单一分布为假设前提的统计学不确定性分析方法掩盖了其他概率分布特征对模型的影响。突破单一误差分布条件的假设前提,本文使用Monte Carlo方法模拟了不同概率分布情况下地质剖面数据中地质界线的抽样采集,以及地质界线空间分布的不确定性;依托地质界线空间位置与地质属性的耦合关系,提出了用地质属性概率分布实现地质界线空间不确定性的定量可视化,并结合实际地质剖面探讨了多种概率分布条件下地质界线的空间不确定性。实例研究表明,基于Monte Carlo模拟的不确定性分析方法可以突破单一误差分布假设条件,结合地质属性概率可充分揭示出建模数据的内在不确定性与模型外在要素形态之间的耦合关系。  相似文献   
2.
Hou  Weisheng  Cui  Chanjie  Yang  Liang  Yang  Qiaochu  Clarke  Keith 《Mathematical Geosciences》2019,51(1):29-51

In each step of geological modeling, errors have an impact on measurements and workflow processes and, so, have consequences that challenge accurate three-dimensional geological modeling. In the context of classical error theory, for now, only spatial positional error is considered, acknowledging that temporal, attribute, and ontological errors—and many others—are part of the complete error budget. Existing methods usually assumed that a single error distribution (Gaussian) exists across all kinds of spatial data. Yet, across, and even within, different kinds of raw data (such as borehole logs, user-defined geological sections, and geological maps), different types of positional error distributions may exist. Most statistical methods make a priori assumptions about error distributions that impact their explanatory power. Consequently, analyzing errors in multi-source and conflated data for geological modeling remains a grand challenge in geological modeling. In this study, a novel approach is presented regarding the analysis of one-dimensional multiple errors in the raw data used for model geological structures. The analysis is based on the relationship between spatial error distributions and different geological attributes. By assuming that the contact points of a geological subsurface are decided by the geological attributes related to both sides of the subsurface, this assumption means that the spatial error of geological contacts can be transferred into specific probabilities of all the related geological attributes at each three-dimensional point, which is termed the “geological attribute probability”. Both a normal distribution and a continuous uniform distribution were transferred into geological attribute probabilities, allowing different kinds of spatial error distributions to be summed directly after the transformation. On cross-points with multiple raw data with errors that follow different kinds of distributions, an entropy-based weight was given to each type of data to calculate the final probabilities. The weighting value at each point in space is decided by the related geological attribute probabilities. In a test application that accounted for the best estimates of geological contacts, the experimental results showed the following: (1) for line segments, the band shape of geological attribute probabilities matched that of existing error models; and (2) the geological attribute probabilities directly show the error distribution and are an effective way of describing multiple error distributions among the input data.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号