首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   745篇
  免费   35篇
  国内免费   7篇
测绘学   12篇
大气科学   49篇
地球物理   225篇
地质学   261篇
海洋学   63篇
天文学   77篇
综合类   5篇
自然地理   95篇
  2023年   3篇
  2022年   3篇
  2021年   8篇
  2020年   13篇
  2019年   14篇
  2018年   22篇
  2017年   20篇
  2016年   20篇
  2015年   15篇
  2014年   15篇
  2013年   43篇
  2012年   38篇
  2011年   30篇
  2010年   21篇
  2009年   36篇
  2008年   40篇
  2007年   37篇
  2006年   36篇
  2005年   25篇
  2004年   37篇
  2003年   13篇
  2002年   31篇
  2001年   17篇
  2000年   23篇
  1999年   22篇
  1998年   21篇
  1997年   8篇
  1996年   14篇
  1995年   9篇
  1994年   10篇
  1993年   6篇
  1992年   13篇
  1991年   9篇
  1990年   11篇
  1989年   9篇
  1988年   6篇
  1987年   7篇
  1986年   6篇
  1985年   10篇
  1984年   6篇
  1983年   5篇
  1981年   6篇
  1980年   3篇
  1979年   7篇
  1978年   4篇
  1977年   5篇
  1976年   8篇
  1975年   5篇
  1974年   5篇
  1969年   3篇
排序方式: 共有787条查询结果,搜索用时 15 毫秒
1.
The estimation of hydrologic transit times in a catchment provides insights into the integrated effects of water storage, mixing dynamics, and runoff generation processes. There has been limited effort to estimate transit times in southern boreal Precambrian Shield landscapes, which are characteristically heterogeneous with surface cover including till, thin soils, bedrock outcrops, and depressional wetland features that play contrasting hydrologic roles. This study presents approximately 3.5 years of precipitation and streamflow water isotope data and estimates mean transit times (MTTs) and the young water fraction (py) across six small catchments in the Muskoka-Haliburton region of south-central Ontario. The main objectives were to define a typical range of MTTs for headwater catchments in this region and to identify landscape variables that best explain differences in MTTs/py using airborne light detection and ranging and digital terrain analysis. Of the transit time distributions, the two parallel linear reservoir and gamma distributions best describe the hydrology of these catchments, particularly because of their ability to capture more extreme changes related to events such as snowmelt. The estimated MTTs, regardless of the modelling approach or distribution used, are positively associated with the percent wetland area and negatively with mean slope in the catchments. In this landscape, low-gradient features such as wetlands increase catchment scale water storage when antecedent conditions are dryer and decrease transit times when there is a moisture surplus, which plausibly explains the increases in MTTs and mean annual runoff from catchments with significant coverage of these landscape features.  相似文献   
2.
Sustainable fuels legislation and volatility in energy prices have put additional pressures on the forestry sector to intensify the harvesting of biomass for “advanced biofuel” production. To better understand how residual biomass removal after harvest affects forest hydrology in relatively low slope terrain, a Before-After-Control-Impact (BACI) study was conducted in the USDA Forest Service's Marcell Experimental Forest, Minnesota, USA. Hydrological measurements were made from 2010–2013 on a forested hillslope that was divided into three treatment blocks, where one block was harvested and residual biomass removed (Biomass Removed), the second was harvested and residual biomass left (Biomass Left), and the last block was left as an Unharvested Control. The pre-harvest period (2 years) was 2010–11 and post-harvest (2 years) was 2012–13. Water table elevation at the upslope and downslope position, subsurface runoff, and soil moisture were measured between May–November. Mixed effect statistical models were used to compare both the before-after and “control” treatment ratios (ratios between harvested hillslopes and the Unharvested Control hillslope). Subsurface runoff significantly increased (p < .05) at both harvested hillslopes but to a greater degree on the Biomass Left hillslope. Greater subsurface runoff volumes at both harvested hillslopes were driven by substantial increases during fall, with additional significant increases during summer on the Biomass Left hillslope. The hydrological connectivity, inferred from event runoff ratios, increased due to harvesting at both hillslopes but only significantly on the Biomass Left hillslope. The winter harvest minimized soil disturbance, resulting in no change to the effective hydraulic conductivity distribution with depth. Thus, the observed hydrological changes were driven by increased effective precipitation and decreased evapotranspiration, increasing the duration that both harvested hillslopes were hydrologically active. The harvesting of residual biomass appears to lessen hydrological connectivity relative to leaving residual biomass on the hillslope, potentially decreasing downstream hydrological impacts of similar forestry operations.  相似文献   
3.
Quenched juvenile mafic inclusions (enclaves) are an occasional but informative component in the deposits of large felsic eruptions. Typically, the groundmasses of these inclusions rapidly crystallize as the mafic magma is chilled against a more voluminous, cooler felsic host, providing a physical and chemical record of the nature and timing of mafic–felsic interactions. We examine mafic inclusions of two compositional lineages (tholeiitic and calc-alkaline) from deposits of the 25.4 ka Oruanui eruption (Taupo, New Zealand). 2-D quantitative textural data from analysis of back-scattered electron images reveal a marked diversity in the groundmass textures of the inclusions, including median crystal sizes (amphibole: 14–45 µm; plagioclase: 21–75 µm) and aspect ratios (amphibole: 1.7–4.2; plagioclase: 2.1–4.0), area number densities (amphibole: 122–2660 mm?2; plagioclase: 117–2990 mm?2), area fractions (?) of minerals (?plag?=?23–45%, ?amph?=?0–28%, ?cpx?=?0–6%, ?oxides?=?0.6–5.5%), and the relative abundance of plagioclase and amphibole (?plag/?amph?=?1.0–4.6). Textural parameters vary more significantly within, rather than between, the two compositional lineages, and in some cases show marked variations across individual clasts, implying that each inclusion’s cooling history, rather than bulk composition, was the dominant control on textural development. Groundmass mineral compositions are also diverse both within and between inclusions (e.g. plagioclase from An34–92, with typical intra-clast variability of ~?20 mol%), and do not correlate with bulk chemistry. Diverse groundmass textures and mineral and glass chemistries are inferred to reflect complex interplay of a range of factors including the degree and rate of undercooling, bulk composition, water content and, possibly, intensive variables. Our data are inconsistent with breakup of a crystallizing ponded mafic layer at the base of the Oruanui melt-dominant body, instead implying that each inclusion partially crystallized as a discrete body with a unique cooling history. Extensive ingestion of mush-derived macro-crystals suggests that mechanical breakup of mafic feeder dikes occurred within a transition zone between the mush and melt-dominant magma body. In this zone, the mush lacked yield strength, as has been inferred from field studies of narrow (meters to few tens of meters) mush-melt transition zones preserved in composite intrusions. Evidence for plastic deformation of inclusions during eruption and the abundance of fresh residual glass in inclusions from all eruptive phases suggest that the inclusions formed syn-eruptively, and must have been formed recurrently at multiple stages throughout the eruption.  相似文献   
4.
The Anthropocene deposits of England, here regarded as those formed after ~1950 CE, are now extensive, take various forms, and may be characterized and recognized by a number of stratigraphic signals, such as artificial radionuclides, pesticide residues, microplastics, enhanced fly ash levels, concrete fragments and a novel variety of ‘technofossils’ and neobiotic species. They include the uppermost parts of both ‘natural’ deposits such as the sediment layers formed in lakes and estuaries, and more directly human-made or human-influenced ones such as landfill deposits and the ‘artificial ground’ beneath urban areas and around major constructions. ‘Negative deposits’ include the worked areas of quarries and regions such as the English Fenland, where thick peat deposits have ablated to leave a strongly modified underlying landscape, and extend beneath into the subterranean realm as mine workings, metro systems and boreholes. The production of these is still rapidly increasing and evolving in character, while the early signs of global change, such as warming, sea level rise, and modifications to biotic assemblages, are beginning to further modify the emerging geology of this new phase of Earth history.  相似文献   
5.
The Dunhuang Basin, a typical inland basin in northwestern China, suffers a net loss of groundwater and the occasional disappearance of the Crescent Lake. Within this region, the groundwater/surface-water interactions are important for the sustainability of the groundwater resources. A three-dimensional transient groundwater flow model was established and calibrated using MODFLOW 2000, which was used to predict changes to these interactions once a water diversion project is completed. The simulated results indicate that introducing water from outside of the basin into the Shule and Danghe rivers could reverse the negative groundwater balance in the Basin. River-water/groundwater interactions control the groundwater hydrology, where river leakage to the groundwater in the Basin will increase from 3,114?×?104 m3/year in 2017 to 11,875?×?104 m3/year in 2021, and to 17,039?×?104 m3/year in 2036. In comparison, groundwater discharge to the rivers will decrease from 3277?×?104 m3/year in 2017 to 1857?×?104 m3/year in 2021, and to 510?×?104 m3/year by 2036; thus, the hydrology will switch from groundwater discharge to groundwater recharge after implementing the water diversion project. The simulation indicates that the increased net river infiltration due to the water diversion project will raise the water table and then effectively increasing the water level of the Crescent Lake, as the lake level is contiguous with the water table. However, the regional phreatic evaporation will be enhanced, which may intensify soil salinization in the Dunhuang Basin. These results can guide the water allocation scheme for the water diversion project to alleviate groundwater depletion and mitigate geo-environmental problem.  相似文献   
6.
The northern Wuyi area, which is located in the northern Wuyi metallogenic belt, has superior mineralization conditions. The Pingxiang–Guangfeng–Jiangshan–Shaoxing fault (PSF) extends across the whole region regardless of whether or how the PSF relates to the near-surface mineralization. We carried out an MT survey in the region and obtained a reliable 2D model of the crustal electrical structure to a depth of 30 km. In the resistivity model, we inferred that a continuous high conductivity belt that ranges from the shallow to deep crust is a part of the PSF. Then, we estimated the fluid content and pressure gradient to identify the deep sources of fluid as well as its pattern of motion pattern. Finally, we proposed a model for the deep metallogenic migration processes that combines geological data, fluid content data, pressure gradient data, and the subsurface resistivity model. The model analysis showed that the Jiangnan orogenic belt and the Cathaysia block formed the PSF during the process of com. The deep fluid migrated upward through the PSF to the shallow crust. Therefore, we believe that the PSF is an ore-forming fluid migration channel and that it laid the material basis for large-scale mineralization in the shallow crust.  相似文献   
7.
The Mau Forest Complex is Kenya's largest fragment of Afromontane forest, providing critical ecosystem services, and has been subject to intense land use changes since colonial times. It forms the upper catchment of rivers that drain into major drainage networks, thus supporting the livelihoods of millions of Kenyans and providing important wildlife areas. We present the results of a sedimentological and palynological analysis of a Late Pleistocene–Holocene sediment record of Afromontane forest change from Nyabuiyabui wetland in the Eastern Mau Forest, a highland region that has received limited geological characterization and palaeoecological study. Sedimentology, pollen, charcoal, X-ray fluorescence and radiocarbon data record environmental and ecosystem change over the last ~16 000 cal a bp. The pollen record suggests Afromontane forests characterized the end of the Late Pleistocene to the Holocene with dominant taxa changing from Apodytes, Celtis, Dracaena, Hagenia and Podocarpus to Cordia, Croton, Ficus, Juniperus and Olea. The Late Holocene is characterized by a more open Afromontane forest with increased grass and herbaceous cover. Continuous Poaceae, Cyperaceae and Juncaceae vegetation currently cover the wetland and the water level has been decreasing over the recent past. Intensive agroforestry since the 1920s has reduced Afromontane forest cover as introduced taxa have increased (Pinus, Cupressus and Eucalyptus).  相似文献   
8.

Time-shift, one of the most popular time-lapse seismic attributes, has been widely used in dynamic reservoir characterization by linking it with pressure and geomechanical changes. Therefore, it is important to select appropriate calculation methods according to different time-lapse seismic data quality and time-shift magnitude. To date, there have been various published works comparing different time-shift calculation methods and discussing their advantages and disadvantages. However, most of these comparisons are based only on synthetic tests or single field applications. As the quality of time-lapse seismic data and time-shift magnitude can vary in different fields, one method may not work consistently well for each case. In this paper, a critical comparison of three different time-shift calculation techniques (Hale’s fast cross-correlation, Rickett’s non-linear inversion, and Whitcombe’s correlated leakage method) is provided. The three methods are applied to a set of synthetic data sets that are designed to account for various seismic noise and time-shift magnitudes. They are also applied to four real time-lapse seismic data sets from three North Sea fields. The calculated time-shift results are compared with the input (in synthetic tests) or the real observations from information such as seabed subsidence and compaction (in field applications). Both qualitative and quantitative comparisons are performed. At the end, each of the time-shift methods is evaluated based on different aspects, and the most appropriate method is suggested for each data scenario. All three time-shift methods are found to successfully measure time-shifts. However, Rickett’s non-linear inversion is the most outstanding method, as it gives smooth time-shifts with relatively good accuracy, and the derived time strains are more stable and interpretable.

  相似文献   
9.
Acta Geotechnica - The most common cause of slope instability is intense or sustained rainfall, which may induce reduction in soil suction, and thus, shear strength. Capillary barrier systems...  相似文献   
10.
Decades of research has concluded that the percent of impervious surface cover in a watershed is strongly linked to negative impacts on urban stream health. Recently, there has been a push by municipalities to offset these effects by installing structural stormwater control measures (SCMs), which are landscape features designed to retain and reduce runoff to mitigate the effects of urbanisation on event hydrology. The goal of this study is to build generalisable relationships between the level of SCM implementation in urban watersheds and resulting changes to hydrology. A literature review of 185 peer-reviewed studies of watershed-scale SCM implementation across the globe was used to identify 52 modelling studies suitable for a meta-analysis to build statistical relationships between SCM implementation and hydrologic change. Hydrologic change is quantified as the percent reduction in storm event runoff volume and peak flow between a watershed with SCMs relative to a (near) identical control watershed without SCMs. Results show that for each additional 1% of SCM-mitigated impervious area in a watershed, there is an additional 0.43% reduction in runoff and a 0.60% reduction in peak flow. Values of SCM implementation required to produce a change in water quantity metrics were identified at varying levels of probability. For example, there is a 90% probability (high confidence) of at least a 1% reduction in peak flow with mitigation of 33% of impervious surfaces. However, as the reduction target increases or mitigated impervious surface decreases, the probability of reaching the reduction target also decreases. These relationships can be used by managers to plan SCM implementation at the watershed scale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号