首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   4篇
测绘学   1篇
大气科学   10篇
地球物理   5篇
地质学   61篇
海洋学   3篇
天文学   1篇
自然地理   10篇
  2014年   2篇
  2013年   8篇
  2012年   2篇
  2011年   3篇
  2010年   5篇
  2009年   8篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   6篇
  2004年   6篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  1999年   4篇
  1998年   3篇
  1997年   5篇
  1996年   4篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1989年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有91条查询结果,搜索用时 15 毫秒
1.
The Lower Permian Wasp Head Formation (early to middle Sakmarian) is a ~95 m thick unit that was deposited during the transition to a non‐glacial period following the late Asselian to early Sakmarian glacial event in eastern Australia. This shallow marine, sandstone‐dominated unit can be subdivided into six facies associations. (i) The marine sediment gravity flow facies association consists of breccias and conglomerates deposited in upper shoreface water depths. (ii) Upper shoreface deposits consist of cross‐stratified, conglomeratic sandstones with an impoverished expression of the Skolithos Ichnofacies. (iii) Middle shoreface deposits consist of hummocky cross‐stratified sandstones with a trace fossil assemblage that represents the Skolithos Ichnofacies. (iv) Lower shoreface deposits are similar to middle shoreface deposits, but contain more pervasive bioturbation and a distal expression of the Skolithos Ichnofacies to a proximal expression of the Cruziana Ichnofacies. (v) Delta‐influenced, lower shoreface‐offshore transition deposits are distinguished by sparsely bioturbated carbonaceous mudstone drapes within a variety of shoreface and offshore deposits. Trace fossil assemblages represent distal expressions of the Skolithos Ichnofacies to stressed, proximal expressions of the Cruziana Ichnofacies. Impoverished trace fossil assemblages record variable and episodic environmental stresses possibly caused by fluctuations in sedimentation rates, substrate consistencies, salinity, oxygen levels, turbidity and other physio‐chemical stresses characteristic of deltaic conditions. (vi) The offshore transition‐offshore facies association consists of mudstone and admixed sandstone and mudstone with pervasive bioturbation and an archetypal to distal expression of the Cruziana Ichnofacies. The lowermost ~50 m of the formation consists of a single deepening upward cycle formed as the basin transitioned from glacioisostatic rebound following the Asselian to early Sakmarian glacial to a regime dominated by regional extensional subsidence without significant glacial influence. The upper ~45 m of the formation can be subdivided into three shallowing upward cycles (parasequences) that formed in the aftermath of rapid, possibly glacioeustatic, rises in relative sea‐level or due to autocyclic progradation patterns. The shift to a parasequence‐dominated architecture and progressive decrease in ice‐rafted debris upwards through the succession records the release from glacioisostatic rebound and amelioration of climate that accompanied the transition to broadly non‐glacial conditions.  相似文献   
2.
10 数字地震图的波形参数测量 常规地震图的处理所测定的信号参数并不多,如初动时间、振幅、上升时间、波形宽度、信号矩以及特殊波组的初动方向(见图10.1).  相似文献   
3.
Annually laminated sediments (glacial varves) from Lake Silvaplauna, a High Alpine proglacial lake in the Central Swiss Alps, were compared with glacier monitoring data and instrumental climate data from 1864 to 1990. Long-term and short-term responses to climatic change as well as anthropogenic influence can be traced separately in the varve succession. Economic development in the lake catchment has resulted in higher autochthonous production in recent years. Autochthonous components contribute around 10% to the total amount of sediment accumulated annually since 1960 but their contribution is negligible before this date. Decadal-scale varve thickness trends correlate with glacier size-variations. A stepwise, running multiple regression analysis demonstrates that interannual changes in varve thickness are strongly correlated with changes in mean summer temperatures, but cannot be sufficiently explained without considering summer precipitation and the number of days with snow per year. The wide range of observed correlation coefficients reveals the sensitivity of the archive to temporal variability of the climatic forcing factors and makes the development of transfer functions ambiguous.  相似文献   
4.
Dating results from terrestrial records in the northern foreland of the Alps have been compiled in order to establish an independent chronostratigraphy for the climate history of this region. U/Th dates of peat deposited during the final phase of the Last Interglacial indicate that it lasted until at least c. 115 000 yr ago. The Early Würmian started with a period of severe cold climate causing a substitution of forest by tundra-like vegetation. It is assumed that during this period glaciers advanced to the margin of the foreland of at least the Western Alps. Sediments attributed to this glaciation are dated to about 103 000 yr. Three subsequent interstadials, all characterized by coniferous forest, were interrupted by cold stadials with steppe to tundra-like vegetation. The first interstadial is dated to about 95 000 yr. There is evidence for an interstadial with open coniferous woodland and three phases of steppe vegetation during the Middle Würmian, between c. 50000 and 30 000 yr ago. The last glaciation of the Alpine Foreland reached its maximum extension between 24 000 and 21 500 yr and glaciers rapidly collapsed before ˜17 500 yr ago. A series of minor re-advances during the Lateglacial is reported from within the Alps, but the glaciers barely reached the main Alpine valleys during this time. The last of these advances formed the Egesen moraine and occurred at about 11 800 yr ago during the Younger Dryas.  相似文献   
5.
Velichko, A. A., Novenko, E. Y., Pisareva, V. V., Zelikson, E. M., Boettger, T. & Junge, F. W. 2005 (May): Vegetation and climate changes during the Eemian interglacial in Central and Eastern Europe: comparative analysis of pollen data. Boreas , Vol. 34, pp. 207–219. Oslo. ISSN 0300–9483.
The article discusses pollen data from Central and Eastern Europe and provides insight into the climate and vegetation dynamics throughout the Eemian interglacial (including preceding and succeeding transitional phases). Three sections with high resolution pollen records are presented. Comparison of the data indicates that the range of climatic and environmental changes increased from west to east, whereas the main phases of vegetation development appear to have been similar throughout the latitudinal belt. At the interglacial optimum, the vegetation in both Central and Eastern Europe was essentially homogeneous. An abrupt change marks the Saalian/Eemian boundary (transition from OIS 6 to OIS 5e), where environmental fluctuations were similar to those detected at the transition from the Weichselian to the Holocene (Allerød and Dryas 3). Transition from the Eemian to the Weichselian was gradual in the western part of the transect, with forest persisting. In the east, fluctuations of climate and vegetation were more dramatic; forest deteriorated and was replaced by cold open landscapes.  相似文献   
6.
7.
Lüthgens, C., Böse, M. & Preusser, F. 2011: Age of the Pomeranian ice‐marginal position in northeastern Germany determined by Optically Stimulated Luminescence (OSL) dating of glaciofluvial sediments. Boreas, 10.1111/j.1502‐3885.2011.00211.x. ISSN 0300‐9843 The Pomeranian ice margin is one of the most prominent ice‐marginal features of the Weichselian glaciation in northern Europe. Previous results of surface‐exposure dating (SED) of this ice margin disagree with established chronologies and ice retreat patterns, i.e. are much younger than previously expected. We crosscheck the age of the Pomeranian ice‐marginal position in northeastern Germany using single‐grain quartz Optically Stimulated Luminescence (OSL) dating of glaciofluvial sediments. OSL dating indicates an active ice margin between 20.1±1.6 ka and 19.4±2.4 ka forming outwash plains attributed to the Pomeranian ice‐marginal position. On the basis of these results, we suggest a critical reassessment of previous SED data available for the Pomeranian ice‐marginal position within their respective regional geomorphological contexts. From a process‐based point of view, SED ages derived from glacigenic boulders document the stabilization of the landscape after melting of dead ice and landscape transformation under periglacial conditions rather than the presence of an ice margin. SED indicates a first phase of boulder stabilization at around 16.4±0.7 ka, followed by landscape stabilization within the area attributed to the recessional Gerswalder subphase around 15.2±0.5 ka. A final phase of accumulation of glaciolacustrine and glaciofluvial sediments at around 14.7±1.0 ka documents the melting of buried dead ice at that time.  相似文献   
8.
Four assemblages from calcic pelitic schists from South Strafford,Vermont, have been studied in detail to determine the relationshipbetween reaction history and compositional zoning of minerals.The lowest-grade assemblage is garnet + biotite + chlorite +plagioclase + epidote + quartz + muscovite + graphite + fluid.Along a path of isobaric heating, the net reaction is Chl +Ms + Ep + Gr = Grt + Bt + Pl + fluid. Garnet grows with decreasingFe/(Fe + Mg) and XSpa, (from 0•2 to 0•05), XGra staysnearly constant between 0•20 and 0•25, and plagioclasegrows with XAn increasing from peristerite to 0•2–0•5. The subsequent evolution depends on whether chlorite or epidotereacts out first. If chlorite is removed from the assemblagefirst, the net reaction along an isobaric heating path becomesGrt + Ms + Ep + Qtz + Gr = Bt + Pl + fluid. XAn of plagioclaseincreases to 0•20–0•70, depending on the bulk-rockcomposition and changes in pressure and temperature. If epidoteis removed first, the assemblage becomes a simple pelite andthe net reaction becomes Chl + Pl + Ms + Qtz = Grt + Bt + H2O.Plagioclase is consumed to provide Ca for growing garnet, andXAn, Fe/(Fe + Mg) of garnet, XGra, and XSpa all decrease. Afterboth chlorite and epidote are removed, continued heating upto the metamorphic peak of {small tilde}600C produces littleprogress of the reaction Grt + Ms = Bt + Pl; and XAn increases. The four assemblages have been numerically modeled using theGibbs method starting with measured compositions. The modelssuccessfully predict the observed compositional zoning and trendsof mineral growth and consumption along the computed P–Tpaths. The models also predict the compositional mineral zoningthat would have resulted from other P–T paths. * Present address: Department of Geology, University of Alabama, Tuscaloosa, Alabama 35487  相似文献   
9.
We present results of three sand-box experiments that model the association between tectonic accretion and sedimentation in a forearc basin. Experimental sedimentation occurs step by step in the forearc basin during shortening of the sand wedge. In each experiment, the development of the accretionary wedge leads to the formation of a major backthrust zone. This major deformation zone accounts for the thickening in the rear part of the wedge. In natural settings this tectonic bulge dams sediments that are transported toward the trench from mountainous terrain behind the forearc. We test the variation of friction along the déollement and note the following: (1) shortening of a low-friction wedge involves a mechanical balance between forethrusts and backthrust propagation and this balance is recorded by the sedimentary sequence trapped in the forearc basin. Indeed, if most of the movement occurs along the backthrust, the deepening of the basin will be larger and consequently the thickness of the sedimentary sequence will be greater. (2) Such balance does not exist in the case of a high-friction wedge. (3) Variation of friction along the décollement during shortening of the sand wedge leads to modification in the forearc basin filling. Thus, for similar increments of convergence, the sequence deposited in the forearc basin shows relatively larger thickness when the wedge is shortened above a high-friction décollement. We suggest that contraction and thickening in the rear part of the wedge is an efficient mechanism to, initiate and develop a forearc basin. Thus, this kind of basin occurs in convergent settings, without collapse related to local extension or tectonic erosion. They represent a sedimentary trap on a passive basement, bounded by a tectonic bulge. The Quaternary Hikurangi forearc basin, southeast of the North Island of New Zealand, is bounded by two actively uplifting ridges. Thus, this basin is considered to be a possible example of the basins modelled in our experiments, and we suggest that the limit between the basin and the wedge could be a complex backthrust zone.  相似文献   
10.
Amphibolites of the Post Pond Volcanics, south-west corner ofthe Mt. Cube Quadrangle, Vermont, are characterized by a greatdiversity of bulk rock types that give rise to a wide varietyof low-variance mineral assemblges. Original rock types arebelieved to have been intrusive and extrusive volcanics, hydrothermallyaltered volcanics and volcanogenic sediments with or withoutadmixtures of sedimentary detritus. Metamorphism was of staurolite-kyanitegrade. Geothermometry yields a temperature of 535 ± 20°C at pressures of 5–6 kb. Partitioning of Fe and Mg between coexisting phases is systematic,indicating a close approach to chemical equilibrium was attained.Relative enrichment of Fe/Mg is garnet > staurolite >gedrite > anthophyllite cummingtonite hornblende > biotite> chlorite > wonesite > cordierite dolomite > talc;relative enrichment in Mn/Mg is garnet > dolomite > gedrite> staurolite cummingtonite > hornblende > anthophyllite> cordierite > biotite > wonesite > chlorite >talc. between coexisting amphiboles varies as a function ofbulk Fe/Mg, which is inconsistent with an ideal molecular solutionmodel for amphiboles. Mineral assemblages are conveniently divided into carbonate+ hornblende-bearing, hornblende-bearing (carbonate-absent)and hornblende-absent. The carbonate-bearing assemblages allcontain hornblende + dolomite+ calcite + plagioclase (andesineand/or anorthite) + quartz with the additional phases garnetand epidote (in Fe-rich rocks) and chlorite ± cummingtonite(in magnesian rocks). Carbonate-bearing assemblages are restrictedto the most calcic bulk compositions. Hornblende-bearing (carbonate absent) assemblages occur in rocksof lower CaO content than the carbonate-bearing assemblages.All of these assemblages contain hornblende + andesine ±quartz + Fe-Ti oxide (rutile in magnesian rocks and ilmenitein Fe-rich rocks). In rocks of low Al content, cummingtoniteand two orthoamphiboles (gedrite and anthophyllite) are common.In addition, garnet is found in Fe-rich rocks and chlorite isfound in Mg-rich rocks. Several samples were found that containhornblende + cummingtonite + gedrite + anthophyllite ±garnet +chlorite + andesine + quartz + Fe-Ti oxide ±biotite. Aluminous assemblages contain hornblende + staurolite+ garnet ± anorthite/bytownite (coexisting with andesine)± gedrite ± biotite ± chlorite ±andesine ± quartz ± ilmenite. Hornblende-absentassemblages are restricted to Mg-rich, Ca-poor bulk compositions.These rocks contain chlorite ± cordierite ± staurolite± talc ± gedrite ± anthophyllite ±cummingtonite ± garnet ± biotite ± rutile± quartz ± andesine. The actual assemblage observeddepends strongly on Fe/Mg, Ca/Na and Al/Al + Fe + Mg. The chemistry of these rocks can be represented, to a firstapproximation, by the model system SiO2–Al2O3–MgO–FeO–CaO–Na2O–H2O–CO2;graphical representation is thus achieved by projection fromquartz, andesine, H2O and CO2 into the tetrahedron Fe–Ca–Mg–Al.The volumes defined by compositions of coexisting phases filla large portion of this tetrahedron. In general, the distributionof these phase volumes is quite regular, although in detailthere are a large number of phase volumes that overlap otherphase volumes, especially with respect to Fe/Mg ratios. Algebraicand graphical analysis of numerous different assemblages indicatethat every one of the phase volumes should shift to more magnesiancompositions with decreasing µH2O. It is therefore suggestedthat the overlapping phase volumes are the result of differentassemblages having crystallized in equilibrium with differentvalues of µH2O or µCO2 and that the different valuesmay have been inherited from the original H2O and CO2 contentof the volcanic prototype. If true, this implies that eithera fluid phase was not present during metamorphism, or that fluidflow between rocks was very restricted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号