首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   589篇
  免费   46篇
  国内免费   3篇
测绘学   11篇
大气科学   17篇
地球物理   210篇
地质学   213篇
海洋学   67篇
天文学   83篇
综合类   6篇
自然地理   31篇
  2023年   2篇
  2022年   8篇
  2021年   11篇
  2020年   14篇
  2019年   20篇
  2018年   22篇
  2017年   36篇
  2016年   39篇
  2015年   38篇
  2014年   34篇
  2013年   28篇
  2012年   32篇
  2011年   36篇
  2010年   29篇
  2009年   42篇
  2008年   42篇
  2007年   21篇
  2006年   18篇
  2005年   12篇
  2004年   27篇
  2003年   15篇
  2002年   20篇
  2001年   9篇
  2000年   6篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   4篇
  1995年   6篇
  1994年   2篇
  1993年   5篇
  1992年   2篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1985年   3篇
  1982年   2篇
  1978年   3篇
  1976年   2篇
  1962年   2篇
  1958年   1篇
  1953年   1篇
  1952年   3篇
  1948年   4篇
  1945年   1篇
  1944年   1篇
  1942年   2篇
  1941年   1篇
  1940年   4篇
  1937年   1篇
排序方式: 共有638条查询结果,搜索用时 93 毫秒
1.
Post-earthquake damage data represent an invaluable source of information for the seismic vulnerability assessment of the exposed building stock, as they are a direct evidence of the actual buildings’ performance under real seismic events. This paper exploits a robust and homogeneous database of damage data collected after the 2009 L’Aquila (Italy) earthquake, to derive damage probability matrices for several building typologies representative of the Italian building stock. To this aim, the first part of the work investigates several issues related to the definition of damage to be associated with each inspected building. Different approaches and damage conversion rules are applied, pointing out advantages and weaknesses of each one. Considering the widespread seismic damage observed on masonry infill panels and partitions of reinforced concrete constructions, the impact of this type of non-structural damage on empirical damage and functional loss distributions is explored. The second part of the study proposes different possible interpretations of the repartition of the observed damage in the different damage levels, showing in some cases a bimodal trend. Two novel hybrid procedures are outlined and compared with the classical binomial approach for predicting the subdivision of damage in the different levels. The application of the proposed methodologies to the different building typologies allows the selection, for each one, of the method providing the best fit to empirical results. The parameters required for the application of the optimal approach are reported in the paper, so that results can be used for forecasting the expected seismic damage in sites with similar seismic hazard and exposed buildings.  相似文献   
2.
Stochastic Environmental Research and Risk Assessment - Investigating the nature of trends in time series is one of the most common analyses performed in hydro-climate research. However, trend...  相似文献   
3.
The saddle points are locations where the net gravitational accelerations balance. These regions are gathering more attention within the astrophysics community. Regions about the saddle points present clean, close-to-zero background acceleration environments where possible deviations from General Relativity can be tested and quantified. Their location suggests that flying through a saddle point can be accomplished by leveraging highly nonlinear orbits. In this paper, the geometrical and dynamical properties of the Sun–Earth saddle point are characterized. A systematic approach is devised to find ballistic orbits that experience one or multiple passages through this point. A parametric analysis is performed to consider spacecraft initially on \(L_{1,2}\) Lagrange point orbits. Sun–Earth saddle point ballistic fly-through trajectories are evaluated and classified for potential use. Results indicate an abundance of short-duration, regular solutions with a variety of characteristics.  相似文献   
4.
This work focuses on developing multidisciplinary researches concerning weathering profiles related to landscape evolution of the Capo Vaticano promontory on the Calabria Tyrrhenian side (southern Italy). In this area, the tectonic uplift, occurred at least since Pleistocene, together with the Mediterranean climatic conditions, is the main cause of deep weathering and denudation processes. The latter occurred on the outcropping rocks of the crystalline-metamorphic basement, made up of weathered granitoids, in turn belonging to the Monte Poro granitoid complex (intermediate to felsic plutonic rocks covered by Cenozoic sedimentary successions). Field observations coupled to borehole explorations, geophysical surveys, and minero-petrographical analyses allowed the characterization of the granitoid outcrops typical of the studied area in terms of kind and degree of slope instability. This characterization was based on suitable correlations verified between several factors as weathering degree, elastic properties of rocks, and discontinuity features. Weathering profiles are mainly composed by rock masses varying from completely weathered rock with corestones of highly weathered rock (classes IV–V) to slightly weathered rocks (class II). The weathered rocks are involved in several landslide typologies such as debris flow (frequency 48.5%), translational slide (frequency 33.3%), and minor rock fall and rotational slide (frequency 9%). The achieved data allowed the establishment of a general correlation between weathering degree and type of slope instability. Debris flow-type instabilities are predominant on the steeper slopes, involving very poor rock masses ascribed to the shallowest portions of the weathering class IV. Translational slides are less widespread than the previous ones and often involve a mixture of soil and highly weathered rocks. Rotational slides are more frequently close to the top of the slopes, where the thicknesses of more weathered rocks increase, and involve mainly rock masses belonging to the weathering classes IV and V. Rock falls mostly occur on the vertical escarpments of the road cuts and are controlled by the characteristics of the main discontinuities. The assessment of rock mass rating and slope mass rating, based on the application of the discontinuity data, allowed respectively an evaluation of the quality of rock masses and of the susceptibility of rock slopes to failure. The comparison between the last one and the real stability conditions along the cut slopes shows a good correspondence. Finally, the geological strength index system was also applied for the estimation of rock mass properties. The achieved results give a worthy support for a better understanding of the relationship between the distribution of landslides and the geological features related to different weathering degrees. Therefore, they can provide a reliable tool to evaluate the potential stability conditions of the rock slopes in the studied area and a general reference framework for the study of weathering processes in other regions with similar geological features.  相似文献   
5.
Bulletin of Earthquake Engineering - Automated Multi-Depth Shuttle Warehouses (AMSWs) are compact storage systems that provide a large surface occupation and therefore maximum storage density....  相似文献   
6.
We present a narrative of the eruptive events culminating in the cataclysmic January 15, 2022 eruption of Hunga Tonga-Hunga Ha'apai Volcano by synthesizing diverse preliminary seismic, volcanological, sound wave, and lightning data available within the first few weeks after the eruption occurred. The first hour of eruptive activity produced fast-propagating tsunami waves, long-period seismic waves, loud audible sound waves, infrasonic waves, exceptionally intense volcanic lightning and an unsteady volcanic plume that transiently reached—at 58 ?km—the Earth's mesosphere. Energetic seismic signals were recorded worldwide and the globally stacked seismogram showed episodic seismic events within the most intense periods of phreatoplinian activity, and they correlated well with the infrasound pressure waveform recorded in Fiji. Gravity wave signals were strong enough to be observed over the entire planet in just the first few hours, with some circling the Earth multiple times subsequently. These large-amplitude, long-wavelength atmospheric disturbances come from the Earth's atmosphere being forced by the magmatic mixture of tephra, melt and gasses emitted by the unsteady but quasi-continuous eruption from 0402±1–1800 UTC on January 15, 2022. Atmospheric forcing lasted much longer than rupturing from large earthquakes recorded on modern instruments, producing a type of shock wave that originated from the interaction between compressed air and ambient (wavy) sea surface. This scenario differs from conventional ideas of earthquake slip, landslides, or caldera collapse-generated tsunami waves because of the enormous (~1000x) volumetric change due to the supercritical nature of volatiles associated with the hot, volatile-rich phreatoplinian plume. The time series of plume altitude can be translated to volumetric discharge and mass flow rate. For an eruption duration of ~12 ?h, the eruptive volume and mass are estimated at 1.9 ?km3 and ~2 900 ?Tg, respectively, corresponding to a VEI of 5–6 for this event. The high frequency and intensity of lightning was enhanced by the production of fine ash due to magma—seawater interaction with concomitant high charge per unit mass and the high pre-eruptive concentration of dissolved volatiles. Analysis of lightning flash frequencies provides a rapid metric for plume activity and eruption magnitude. Many aspects of this eruption await further investigation by multidisciplinary teams. It represents a unique opportunity for fundamental research regarding the complex, non-linear behavior of high energetic volcanic eruptions and attendant phenomena, with critical implications for hazard mitigation, volcano forecasting, and first-response efforts in future disasters.  相似文献   
7.

The relationships between cities and underlying groundwater are reviewed, with the aim to highlight the importance of urban groundwater resources in terms of city resilience value. Examples of more than 70 cities worldwide are cited along with details of their groundwater-related issues, specific experiences, and settings. The groundwater-related issues are summarized, and a first groundwater-city classification is proposed in order to facilitate a more effective city-to-city comparison with respect to, for example, the best practices and solutions that have been put in practice by similar cities in terms of local groundwater resources management. The interdependences between some groundwater services and the cascading effects on city life in cases of shock (e.g., drought, heavy rain, pollution, energy demand) and chronic stress (e.g., climate change) are analyzed, and the ideal groundwater-resilient-city characteristics are proposed. The paper concludes that groundwater is a crucial resource for planning sustainability in every city and for implementing city resilience strategies from the climate change perspective.

  相似文献   
8.
9.
A hydraulic invariance (HI)‐based methodology was developed as a tool to support implementation of storm flow control measures into land use master plans (LUMPs) for urban catchments. The methodology is based on the use of simple hydrologic analysis to compare predevelopment and postdevelopment catchment flow release scenarios. Differently from previous literature examples, for which the parcel scale is usually considered for the analysis, HI was pursued assuming the LUMP areas of transformation as the basic units for assigning storm water control measures in the form of flow release restrictions. The methodology was applied to a case study catchment in the southern part of the City of Catania (Italy), for which the LUMP re‐design has been recently proposed. Simulations were run based on the use of the EPA‐Storm Water Management Model and allowed deriving flow release restrictions in order to achieve HI at the subcatchment level for design events of different return period.  相似文献   
10.
The main objective of the LAgrangian Transport EXperiment (LATEX) project was to study the influence of coastal mesoscale and submesoscale physical processes on circulation dynamics, cross-shelf exchanges, and biogeochemistry in the western continental shelf of the Gulf of Lion, Northwestern Mediterranean Sea. LATEX was a five-year multidisciplinary project based on the combined analysis of numerical model simulations and multi-platform field experiments. The model component included a ten-year realistic 3D numerical simulation, with a 1 km horizontal resolution over the gulf, nested in a coarser 3 km resolution model. The in situ component involved four cruises, including a large-scale multidisciplinary campaign with two research vessels in 2010. This review concentrates on the physics results of LATEX, addressing three main subjects: (1) the investigation of the mesoscale to submesoscale processes. The eddies are elliptic, baroclinic, and anticyclonic; the strong thermal and saline front is density compensated. Their generation processes are studied; (2) the development of sampling strategies for their direct observations. LATEX has implemented an adaptive strategy Lagrangian tool, with a reference software available on the web, to perform offshore campaigns in a Lagrangian framework; (3) the quantification of horizontal mixing and cross-shelf exchanges. Lateral diffusivity coefficients, calculated in various ways including a novel technique, are in the range classically encountered for their associated scales. Cross-shelf fluxes have been calculated, after retrieving the near-inertial oscillation contribution. Further perspectives are discussed, especially for the ongoing challenge of studying submesoscale features remotely and from in situ data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号