首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
地球物理   3篇
地质学   8篇
海洋学   1篇
天文学   13篇
自然地理   1篇
  2013年   2篇
  2011年   3篇
  2010年   2篇
  2008年   1篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1985年   1篇
  1982年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
This study explores garnet coronas around hedenbergite, which were formed by the reaction plagioclase + hedenbergite→garnet + quartz, to derive information about diffusion paths that allowed for material redistribution during reaction progress. Whereas quartz forms disconnected single grains along the garnet/hedenbergite boundaries, garnet forms ~20‐μm‐wide continuous polycrystalline rims along former plagioclase/hedenbergite phase boundaries. Individual garnet crystals are separated by low‐angle grain boundaries, which commonly form a direct link between the reaction interfaces of the plagioclase|garnet|hedenbergite succession. Compositional variations in garnet involve: (i) an overall asymmetric compositional zoning in Ca, Fe2+, Fe3+ and Al across the garnet layer; and (ii) micron‐scale compositional variations in the near‐grain boundary regions and along plagioclase/garnet phase boundaries. These compositional variations formed during garnet rim growth. Thereby, transfer of the chemical components occurred by a combination of fast‐path diffusion along grain boundaries within the garnet rim, slow diffusion through the interior of the garnet grains, and by fast diffusion along the garnet/plagioclase and the garnet/hedenbergite phase boundaries. Numerical simulation indicates that diffusion of Ca, Al and Fe2+ occurred about three to four, four and six to seven orders of magnitude faster along the grain boundaries than through the interior of the garnet grains. Fast‐path diffusion along grain boundaries contributed substantially to the bulk material transfer across the growing garnet rim. Despite the contribution of fast‐path diffusion, bulk diffusion through the garnet rim was too slow to allow for chemical equilibration of the phases involved in garnet rim formation even on a micrometre scale. Based on published garnet volume diffusion data the growth interval of a 20‐μm‐wide garnet rim is estimated at ~103–104 years at the inferred reaction conditions of 760 ± 50 °C at 7.6 kbar. Using the same parameterization of the growth law, 100‐μm‐ and 1‐mm‐thick garnet rims would grow within 105–106 and 106–107 years respectively.  相似文献   
2.
Abstract– We have developed new sample preparation and analytical techniques tailored for entire aerogel tracks of Wild 2 sample analyses both on “carrot” and “bulbous” tracks. We have successfully ultramicrotomed an entire track along its axis while preserving its original shape. This innovation allowed us to examine the distribution of fragments along the entire track from the entrance hole all the way to the terminal particle. The crystalline silicates we measured have Mg‐rich compositions and O isotopic compositions in the range of meteoritic materials, implying that they originated in the inner solar system. The terminal particle of the carrot track is a 16O‐rich forsteritic grain that may have formed in a similar environment as Ca‐, Al‐rich inclusions and amoeboid olivine aggregates in primitive carbonaceous chondrites. The track also contains submicron‐sized diamond grains likely formed in the solar system. Complex aromatic hydrocarbons distributed along aerogel tracks and in terminal particles. These organics are likely cometary but affected by shock heating.  相似文献   
3.
Abstract– Space weathering products, such as agglutinates and nanophase iron‐bearing rims are easily preserved through lithification in lunar regolith breccias, thus such products, if produced, should be preserved in asteroidal regolith breccias as well. A study of representative regolith breccia meteorites, Fayetteville (H4) and Kapoeta (howardite), was undertaken to search for physical evidence of space weathering on asteroids. Amorphous or npFe0‐bearing rims cannot be positively identified in Fayetteville, although possible glass rims were found. Extensive friction melt was discovered in the meteorite that is difficult to differentiate from weathered materials. Several melt products, including spherules and agglutinates, as well as one irradiated rim and one possible npFe0‐bearing rim were identified in Kapoeta. The existence of these products suggests that lunar‐like space weathering processes are, or have been, active on asteroids.  相似文献   
4.
The response of shallow‐water sequences to oceanic anoxic event 2 and mid‐Cenomanian events 1a and 1b was investigated along the west African margin of Morocco north of Agadir (Azazoul) and correlated with the deep‐water sequence of the Tarfaya Basin (Mohammed Beach) based on biostratigraphy, mineralogy, phosphorus and stable isotopes. In the deeper Mohammed Beach section results show double peaks in δ13Corg for mid‐Cenomanian events 1a and 1b (Rotalipora reicheli biozone, lower CC10a biozone), the characteristic oceanic anoxic event 2 δ13C excursion (Rotalipora cushmani extinction, top of CC10a biozone) and laminated (anoxic) black shale. In the shallow environment north of Agadir, a fluctuating sea‐level associated with dysoxic, brackish and mesotrophic conditions prevailed during the middle to late Cenomanian, as indicated by oyster biostromes, nannofossils, planktonic and benthonic foraminiferal assemblages. Anoxic conditions characteristic of oceanic anoxic event 2 (for example, laminated black shales) did not reach into shallow‐water environments until the maximum transgression of the early Turonian. Climate conditions decoupled along the western margin of Morocco between mid‐Cenomanian event 1b and the Cenomanian–Turonian boundary, as also observed in eastern Tethys. North of Agadir alternating humid and dry seasonal conditions prevailed, whereas in the Tarfaya Basin the climate was dry and seasonal. This climatic decoupling can be attributed to variations in the Intertropical Convergence Zone and in the intensity of the north‐east trade winds in tropical areas.  相似文献   
5.
6.
Abstract— We studied patinas on lunar rocks 75075 and 76015 from the Apollo collection using a multi-disciplinary approach, including scanning electron microscopy (SEM), energy dispersive x-ray spectrometry (EDS), transmission electron microscopy (TEM), wavelength-dispersive x-ray (WDS) mapping, Mössbauer spectroscopy, spectral reflectance, and microspectrophotometry. Based on SEM petrography, we have defined three textural types of patina: glazed, fragmental, and classic (cratered). The presence of classic patina is diagnostic of lunar samples that have been exposed directly to the space weathering environment. It is characterized by the presence of microcraters and glass pancakes and is the patina type studied by earlier workers. Classic patina is found on 76015 but not on 75075. Glazed patina is found on both 76015 and 75075, whereas fragmental patina is found only on 75075. The glazed and fragmental patinas on 75075 were probably formed as a result of relatively large nearby impacts; and although these two types of patina are not strictly the result of direct exposure to the space weathering environment, they are important because they affect the optical properties of the rocks. Field emission gun SEM (FE-SEM) of classic patina on 76015 shows evidence of possible solar wind sputtering erosion. Transmission electron microscope studies of 76015 reveal the presence of impact-generated deposits and solar flare particle tracks which, like microcraters and pancakes, are diagnostic of direct exposure to space weathering processes. The outermost surface of the 76015 patina consists of an amorphous rim very much like the rims found on individual lunar soil grains; this amorphous patina rim probably formed by similar processes of impact-generated vapor condensation and possible sputter deposition. Wavelength-dispersive x-ray element maps of polished thin sections of 75075 and 76015 indicate that patina compositions are poor indicators of the compositions and mineralogies of the rocks underlying them. On average, the reflectance spectra of patinas on both samples are slightly darker than those of their unweathered equivalents. Microreflectance measurements show that a thick patina can dramatically alter the optical properties of the rock on which it forms. The backscatter Mössbauer (BaMS) spectrum of a patina-covered surface of 76015 is very similar to that of an unweathered surface, indicating that the Mössbauer signal is generated from beneath the patina. Because BaMS “sees” through surface space-weathering effects to the underlying rock, this technique has great potential for use in robotic missions to other planetary bodies.  相似文献   
7.
8.
Abstract— Using new techniques to examine the products of space weathering of lunar soils, we demonstrate that nanophase reduced iron (npFe0) is produced on the surface of grains by a combination of vapor deposition and irradiation effects. The optical properties of soils (both measured and modeled) are shown to be highly dependent on the cumulative amount of npFe0, which varies with different starting materials and the energetics of different parts of the solar system. The measured properties of intermediate albedo asteroids, the abundant S‐type asteroids in particular, are shown to directly mimic the effects predicted for small amounts of npFe0 on grains of an ordinary chondrite regolith. This measurement and characterization of space weathering products seems to remove a final obstacle hindering a link between the abundant ordinary chondrite meteorites and common asteroids.  相似文献   
9.
Abstract Yaxcopoil‐1 (Yax‐1), drilled within the Chicxulub crater, was expected to yield the final proof that this impact occurred precisely 65 Myr ago and caused the mass extinction at the Cretaceous‐Tertiary (K/T) boundary. Instead, contrary evidence was discovered based on five independent proxies (sedimentologic, biostratigraphic, magnetostratigraphic, stable isotopic, and iridium) that revealed that the Chicxulub impact predates the K/T boundary by about 300,000 years and could not have caused the mass extinction. This is demonstrated by the presence of five bioturbated glauconite layers and planktic foraminiferal assemblages of the latest Maastrichtian zone CF1 and is corroborated by magnetostratigraphic chron 29r and characteristic late Maastrichtian stable isotope signals. These results were first presented in Keller et al. (2004). In this study, we present more detailed evidence of the presence of late Maastrichtian planktic foraminifera, sedimentologic, and mineralogic analyses that demonstrate that the Chicxulub impact breccia predates the K/T boundary and that the sediments between the breccia and the K/T boundary were deposited in a normal marine environment during the last 300,000 years of the Cretaceous.  相似文献   
10.
Abstract– Mineral grains that comprise dust particles in circumstellar, interstellar, and protostellar environments can potentially undergo amorphization and other solid‐state transformations from exposure to energetic ions from space plasmas. The Fe‐sulfide minerals troilite (FeS) and pyrrhotite (Fe1?xS) are important known dust components, but their potential to undergo structural changes, including amorphization, from space radiation processing in dusty space environments has not been experimentally evaluated relative to silicates. We used a transmission electron microscope (TEM) with capabilities for in situ ion irradiation to precisely follow structural changes in troilite and pyrrhotite exposed to 1.0 MeV Kr++ ions selected to optimize the probability of inducing amorphization from nuclear elastic collisional processes. No indication of amorphization was found in either mineral up to an experimentally practical ion dose of 1 × 1016 Kr++ ions cm?2, indicating that both structures can remain crystalline up to a modeled collisional damage level of at least 26 displacements‐per‐atom. This behavior matches that of some of the most radiation‐resistant nonmetallic phases known, and is two orders of magnitude higher than the levels at which Mg‐rich olivine and enstatite become amorphous under the same irradiation conditions. Although pyrrhotite retained short‐range crystalline order during irradiation, its longer range vacancy‐ordered superstructure is removed at modeled damage levels equivalent to those at which olivine and enstatite become amorphous. This suggests that space radiation conditions sufficient to amorphize olivine and enstatite in circumstellar and interstellar environments would convert coexisting pyrrhotite to its disordered structural form, thereby changing magnetic and possibly other properties that determine how pyrrhotite will behave in these environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号