首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
大气科学   7篇
地质学   3篇
天文学   1篇
  2013年   1篇
  2010年   1篇
  2005年   1篇
  2004年   1篇
  1992年   7篇
排序方式: 共有11条查询结果,搜索用时 425 毫秒
1.
The response of shallow‐water sequences to oceanic anoxic event 2 and mid‐Cenomanian events 1a and 1b was investigated along the west African margin of Morocco north of Agadir (Azazoul) and correlated with the deep‐water sequence of the Tarfaya Basin (Mohammed Beach) based on biostratigraphy, mineralogy, phosphorus and stable isotopes. In the deeper Mohammed Beach section results show double peaks in δ13Corg for mid‐Cenomanian events 1a and 1b (Rotalipora reicheli biozone, lower CC10a biozone), the characteristic oceanic anoxic event 2 δ13C excursion (Rotalipora cushmani extinction, top of CC10a biozone) and laminated (anoxic) black shale. In the shallow environment north of Agadir, a fluctuating sea‐level associated with dysoxic, brackish and mesotrophic conditions prevailed during the middle to late Cenomanian, as indicated by oyster biostromes, nannofossils, planktonic and benthonic foraminiferal assemblages. Anoxic conditions characteristic of oceanic anoxic event 2 (for example, laminated black shales) did not reach into shallow‐water environments until the maximum transgression of the early Turonian. Climate conditions decoupled along the western margin of Morocco between mid‐Cenomanian event 1b and the Cenomanian–Turonian boundary, as also observed in eastern Tethys. North of Agadir alternating humid and dry seasonal conditions prevailed, whereas in the Tarfaya Basin the climate was dry and seasonal. This climatic decoupling can be attributed to variations in the Intertropical Convergence Zone and in the intensity of the north‐east trade winds in tropical areas.  相似文献   
2.
3.
4.
5.
The Wexford Basin (south-eastern Ireland) is a NE–SW-trending sedimentary basin containing carbonates and evaporites deposited during the Late Tournaisian and Viséan. Two separate depositional areas are defined on the basis of facies and facies associations. Sediments were deposited in inner ramp, lagoonal and peritidal environments near Rosslare, and in a more open-marine, shallow- to moderately deep-water, mid to outer ramp environment in the western area around Duncormick. Thick breccia deposits that occur in the Wexford Basin formed as a result of (i) fault movement that produced syn-sedimentary debris flows in the Late? Chadian (Breccia type I); (ii) dissolution of anhydrite/gypsum and subsequent collapse of sedimentary strata (Breccia type II); and (iii) fracturing and brecciation of porous rock caused by the movement of high temperature, late diagenetic fluids along fault planes (Breccia type III). The NE–SW facies polarity displayed by both sedimentary successions was the result of NW–SE extension and the reactivation of the NE–SW-trending Wexford Boundary Fault during the Chadian. Extension at the SE margin of the basin with downthrow to the NNW gave the basin a half-graben character. Thickening of the debris flow deposits to the SW suggests that while the half-graben was being tilted it also underwent a NE–SW block rotation due to an axial component of that normal fault.  相似文献   
6.
Abstract Yaxcopoil‐1 (Yax‐1), drilled within the Chicxulub crater, was expected to yield the final proof that this impact occurred precisely 65 Myr ago and caused the mass extinction at the Cretaceous‐Tertiary (K/T) boundary. Instead, contrary evidence was discovered based on five independent proxies (sedimentologic, biostratigraphic, magnetostratigraphic, stable isotopic, and iridium) that revealed that the Chicxulub impact predates the K/T boundary by about 300,000 years and could not have caused the mass extinction. This is demonstrated by the presence of five bioturbated glauconite layers and planktic foraminiferal assemblages of the latest Maastrichtian zone CF1 and is corroborated by magnetostratigraphic chron 29r and characteristic late Maastrichtian stable isotope signals. These results were first presented in Keller et al. (2004). In this study, we present more detailed evidence of the presence of late Maastrichtian planktic foraminifera, sedimentologic, and mineralogic analyses that demonstrate that the Chicxulub impact breccia predates the K/T boundary and that the sediments between the breccia and the K/T boundary were deposited in a normal marine environment during the last 300,000 years of the Cretaceous.  相似文献   
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号