首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76975篇
  免费   1061篇
  国内免费   518篇
测绘学   2048篇
大气科学   5360篇
地球物理   14880篇
地质学   30322篇
海洋学   6157篇
天文学   16024篇
综合类   362篇
自然地理   3401篇
  2022年   384篇
  2021年   640篇
  2020年   697篇
  2019年   700篇
  2018年   4098篇
  2017年   3801篇
  2016年   3142篇
  2015年   1151篇
  2014年   1828篇
  2013年   3017篇
  2012年   2829篇
  2011年   4679篇
  2010年   4241篇
  2009年   5064篇
  2008年   4159篇
  2007年   4582篇
  2006年   2322篇
  2005年   2110篇
  2004年   1977篇
  2003年   1928篇
  2002年   1680篇
  2001年   1306篇
  2000年   1242篇
  1999年   1016篇
  1998年   1059篇
  1997年   993篇
  1996年   783篇
  1995年   843篇
  1994年   790篇
  1993年   651篇
  1992年   591篇
  1991年   614篇
  1990年   675篇
  1989年   559篇
  1988年   535篇
  1987年   685篇
  1986年   567篇
  1985年   729篇
  1984年   796篇
  1983年   787篇
  1982年   675篇
  1981年   694篇
  1980年   626篇
  1979年   579篇
  1978年   574篇
  1977年   515篇
  1976年   483篇
  1975年   498篇
  1974年   482篇
  1973年   518篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Hydrogeochemical based mixing models have been successfully used to investigate the composition and source identification of streamflow. The applicability of these models is limited due to the high costs associated with data collection and the hydrogeochemical analysis of water samples. Fortunately, a variety of mixing models exist, requiting different amount of data as input, and in data scarce regions it is likely that preference will be given to models with the lowest requirement of input data. An unanswered question is if models with high or low input requirement are equally accurate. To this end, the performance of two mixing models with different input requirement, the mixing model analysis (MMA) and the end-member mixing analysis (EMMA), were verified on a tropical montane headwater catchment (21.7 km2) in the Ecuadorian Andes. Nineteen hydrogeochemical tracers were measured on water samples collected weekly during 3 years in streamflow and eight potential water sources or end-members (precipitation, lake water, soil water from different horizons and springs). Results based on 6 conservative tracers, revealed that EMMA (using all tracers) and MMA (using pair-combinations out of the 6 conservative ones), identified the same end-members: rainfall, soil water and spring water., as well as, similar contribution fractions to streamflow from rainfall 21.9% and 21.4%, soil water 52.7% and 52.3%, and spring water 26.1% and 28.7%, respectively. Our findings show that a hydrogeochemical mixing model requiring a few tracers can provide similar outcomes than models demanding more tracers as input data. This underlines the value of a preliminary detailed hydrogeochemical characterization as basis to derive the most cost-efficient monitoring strategy.  相似文献   
2.
Long-term experimental watershed studies have significantly influenced our global understanding of hydrological processes. The discovery and characterization of how stream water quantity and quality respond to a changing environment (e.g. land-use change, acidic deposition) has only been possible due to the establishment of catchments devoted to long-term study. One such catchment is the Fernow Experimental Forest (FEF) located in the headwaters of the Appalachian Mountains in West Virginia, a region that provides essential freshwater ecosystem services to eastern and mid-western United States communities. Established in 1934, the FEF is among the earliest experimental watershed studies in the Eastern United States that continues to address emergent challenges to forest ecosystems, including climate change and other threats to forest health. This data note describes available data and presents some findings from more than 50 years of hydrologic research at the FEF. During the first few decades, research at the FEF focused on the relationship between forest management and hydrological processes—especially those related to the overall water balance. Later, research included the examination of interactions between hydrology and soil erosion, biogeochemistry, N-saturation, and acid deposition. Hydro-climatologic and water quality datasets from long-term measurements and data from short-duration studies are publicly available to provide new insights and foster collaborations that will continue to advance our understanding of hydrology in forested headwater catchments. As a result of its rich history of research and abundance of long-term data, the FEF is positioned to continue to advance understanding of forest ecosystems in a time of unprecedented change.  相似文献   
3.
In snowmelt-driven mountain watersheds, the hydrologic connectivity between meteoric waters and stream flow generation varies strongly with the season, reflecting variable connection to soil and groundwater storage within the watershed. This variable connectivity regulates how streamflow generation mechanisms transform the seasonal and elevational variation in oxygen and hydrogen isotopic composition (δ18O and δD) of meteoric precipitation. Thus, water isotopes in stream flow can signal immediate connectivity or more prolonged mixing, especially in high-relief mountainous catchments. We characterized δ18O and δD values in stream water along an elevational gradient in a mountain headwater catchment in southwestern Montana. Stream water isotopic compositions related most strongly to elevation between February and March, exhibiting higher δ18O and δD values with decreasing elevation. These elevational isotopic lapse rates likely reflect increased connection between stream flow and proximal snow-derived water sources heavily subject to elevational isotopic effects. These patterns disappeared during summer sampling, when consistently lower δ18O and δD values of stream water reflected contributions from snowmelt or colder rainfall, despite much higher δ18O and δD values expected in warmer seasonal rainfall. The consistently low isotopic values and absence of a trend with elevation during summer suggest lower connectivity between summer precipitation and stream flow generation as a consequence of drier soils and greater transpiration. As further evidence of intermittent seasonal connectivity between the stream and adjacent groundwaters, we observed a late-winter flush of nitrate into the stream at higher elevations, consistent with increased connection to accumulating mineralized nitrogen in riparian wetlands. This pattern was distinct from mid-summer patterns of nitrate loading at lower elevations that suggested heightened human recreational activity along the stream corridor. These observations provide insights linking stream flow generation and seasonal water storage in high elevation mountainous watersheds. Greater understanding of the connections between surface water, soil water and groundwater in these environments will help predict how the quality and quantity of mountain runoff will respond to changing climate and allow better informed water management decisions.  相似文献   
4.
Abstract

Large debris flows in steep-sloped ravines debouching to the Rimac River, in metropolitan Lima (Peruvian capital), have resulted in considerable loss of life and property adversely impacting communities in the region. Temporal, spatial and volumetric features of debris flows are difficult to predict, and it is of utmost importance that achievable management solutions are found to reduce the impact of these catastrophic events. The emotional and economic toll of these debris flows on this increasingly densely populated capital city in South America is devastating where communities must live in such inadequate and dangerous conditions. To address this problem, the application of advanced Japanese technology, Sustainable Actions Basin Orientation (SABO), has been investigated using a geomorphological modelling to develop an implementation plan. Rayos de Sol stream basin in Chosica, was selected as a pilot to develop the proposal, as it is considered high risk due to the presence of ancient debris flows and recent flows in 2012, 2015 and 2017. The recurrence of debris flows in this location has resulted in numerous deaths and catastrophic property losses. This study combines geologic and geomorphic mapping and hydraulic and landform evolution numerical modelling. The implementation of a SABO Master Plan based on the multidisciplinary assessment hazard scenarios, will allow the implementation of feasible mitigation actions. The SABO technology has been applied successfully in Japan and other countries in areas with steep short slopes, similar to the conditions surrounding the Peruvian capital. Results from this study will be presented to the Peruvian Government as part of an action plan to manage debris-flow impact.
  1. KEY POINTS
  2. High-risk mass slope failure is linked to poor urban planning in urban developing regions of Lima the capital of Peru.

  3. A multidisciplinary study including geotechnical and hydrological analysis, engineering design, and socio-economic research is required to implement a SABO Master Plan, and this basin is pilot study basin.

  4. At the present time, a maintenance programme for existing hydraulic structures should be implemented, and a flood risk management plan developed may propose the relocation of some communities and infrastructure.

  相似文献   
5.
Solar System Research - The possibility of determining the thermophysical characteristics of the lunar soil by a penetrating probe when using solar heat as a heater is considered. The effectiveness...  相似文献   
6.
Izvestiya, Atmospheric and Oceanic Physics - Our survey of various space image consumers identified that the geographic coverage, regularity, and frequency of observations are the most important...  相似文献   
7.
Doklady Earth Sciences - A first set of K–Ar isotopic ages obtained, which allowed to estimate the age of the largest volcanoes of the Anaunsky Dol (3.2, 2.2 and 1.9 Ma) and eruptive centers...  相似文献   
8.
Natural Resource Management (NRM) is often conducted as a partnership between government and citizens. In Australia, government agencies formulate policy and fund implementation that may be delivered on-ground by community groups (such as Landcare). Since the late 1980s, over AUS$8b of Commonwealth investment has been made in NRM. However, quantitative evidence of environmental improvements is lacking. The NRM Planning Portal has been developed to (1) provide an online spatial information system for sharing Landcare and agency data; and (2) to facilitate NRM priority setting at local and regional planning scales. While the project successfully federates Landcare NRM activity data, challenges included (1) unstructured, non-standardized data, meaning that quantitative reporting against strategic objectives is not currently possible, and (2) a lack of common understanding about the value proposition for adopting the portal approach. Demonstrating the benefit of technology adoption is a key lesson for digital NRM planning.  相似文献   
9.
Astronomy Reports - The initial form of present-day space optical observations contain considerable geometrical and brightness distortions. This problem can be solved based on geometrical...  相似文献   
10.
Doklady Earth Sciences - The results of an analysis of changes in the atmospheric air quality in Moscow during the lockdown period and the decline in business activity caused by the COVID-19...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号