首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8160篇
  免费   391篇
  国内免费   36篇
测绘学   241篇
大气科学   599篇
地球物理   2800篇
地质学   2794篇
海洋学   463篇
天文学   1199篇
综合类   42篇
自然地理   449篇
  2022年   59篇
  2021年   143篇
  2020年   146篇
  2019年   137篇
  2018年   515篇
  2017年   408篇
  2016年   461篇
  2015年   312篇
  2014年   360篇
  2013年   475篇
  2012年   383篇
  2011年   412篇
  2010年   383篇
  2009年   433篇
  2008年   332篇
  2007年   272篇
  2006年   268篇
  2005年   223篇
  2004年   218篇
  2003年   209篇
  2002年   155篇
  2001年   142篇
  2000年   143篇
  1999年   87篇
  1998年   117篇
  1997年   96篇
  1996年   79篇
  1995年   89篇
  1994年   92篇
  1993年   66篇
  1992年   53篇
  1991年   57篇
  1990年   72篇
  1989年   49篇
  1988年   50篇
  1987年   45篇
  1986年   51篇
  1985年   54篇
  1984年   45篇
  1983年   61篇
  1982年   54篇
  1981年   51篇
  1980年   47篇
  1979年   44篇
  1978年   53篇
  1977年   46篇
  1975年   43篇
  1974年   37篇
  1973年   45篇
  1971年   40篇
排序方式: 共有8587条查询结果,搜索用时 31 毫秒
1.
The variability of rainfall-dependent streamflow at catchment scale modulates many ecosystem processes in wet temperate forests. Runoff in small mountain catchments is characterized by a quick response to rainfall pulses which affects biogeochemical fluxes to all downstream systems. In wet-temperate climates, water erosion is the most important natural factor driving downstream soil and nutrient losses from upland ecosystems. Most hydrochemical studies have focused on water flux measurements at hourly scales, along with weekly or monthly samples for water chemistry. Here, we assessed how water and element flows from broad-leaved, evergreen forested catchments in southwestern South America, are influenced by different successional stages, quantifying runoff, sediment transport and nutrient fluxes during hourly rainfall events of different intensities. Hydrograph comparisons among different successional stages indicated that forested catchments differed in their responses to high intensity rainfall, with greater runoff in areas covered by secondary forests (SF), compared to old-growth forest cover (OG) and dense scrub vegetation (CH). Further, throughfall water was greatly nutrient enriched for all forest types. Suspended sediment loads varied between successional stages. SF catchments exported 455 kg of sediments per ha, followed by OG with 91 kg/ha and CH with 14 kg/ha, corresponding to 11 rainfall events measured from December 2013 to April 2014. Total nitrogen (TN) and phosphorus (TP) concentrations in stream water also varied with rainfall intensity. In seven rainfall events sampled during the study period, CH catchments exported less nutrients (46 kg/ha TN and 7 kg/ha TP) than SF catchments (718 kg/ha TN and 107 kg/ha TP), while OG catchments exported intermediate sediment loads (201 kg/ha TN and 23 kg/ha TP). Further, we found significant effects of successional stage attributes (vegetation structure and soil physical properties) and catchment morphometry on runoff and sediment concentrations, and greater nutrients retention in OG and CH catchments. We conclude that in these southern hemisphere, broad-leaved evergreen temperate forests, hydrological processes are driven by multiple interacting phenomena, including climate, vegetation, soils, topography, and disturbance history.  相似文献   
2.
We introduce the freely available web-based Water in an Agricultural Landscape—NUčice Database (WALNUD) dataset that includes both hydrological and meteorological records at the Nučice experimental catchment (0.53 km2), which is representative of an intensively farmed landscape in the Czech Republic. The Nučice experimental catchment was established in 2011 for the observation of rainfall–runoff processes, soil erosion processes, and water balance of a cultivated landscape. The average altitude is 401 m a.s.l., the mean land slope is 3.9%, and the climate is humid continental (mean annual temperature 7.9°C, annual precipitation 630 mm). The catchment is drained by an artificially straightened stream and consists of three fields covering over 95% of the area which are managed by two different farmers. The typical crops are winter wheat, rapeseed, and alfalfa. The installed equipment includes a standard meteorological station, several rain gauges distributed across the basin, and a flume with an H-type facing that is used to monitor stream discharge, water turbidity, and basic water quality indicators. Additionally, the groundwater level and soil water content at various depths near the stream are recorded. Recently, large-scale soil moisture monitoring efforts have been introduced with the installation of two cosmic-ray neutron sensors for soil moisture monitoring. The datasets consist of observed variables (e.g. measured precipitation, air temperature, stream discharge, and soil moisture) and are available online for public use. The cross-seasonal, open access datasets at this small-scale agricultural catchment will benefit not only hydrologists but also local farmers.  相似文献   
3.
A new depth-averaged exploratory model has been developed to investigate the hydrodynamics and the tidally averaged sediment transport in a semi-enclosed tidal basin. This model comprises the two-dimensional (2DH) dynamics in a tidal basin that consists of a channel of arbitrary length, flanked by tidal flats, in which the water motion is being driven by an asymmetric tidal forcing at the seaward side. The equations are discretized in space by means of the finite element method and solved in the frequency domain. In this study, the lateral variations of the tidal asymmetry and the tidally averaged sediment transport are analyzed, as well as their sensitivity to changes in basin geometry and external overtides. The Coriolis force is taken into account. It is found that the length of the tidal basin and, to a lesser extent, the tidal flat area and the convergence length determine the behaviour of the tidally averaged velocity and the overtides and consequently control the strength and the direction of the tidally averaged sediment transport. Furthermore, the externally prescribed overtides can have a major influence on tidal asymmetry in the basin, depending on their amplitude and phase. Finally, for sufficiently wide tidal basins, the Coriolis force generates significant lateral dynamics.  相似文献   
4.
Reservoir sizing is one of the most important aspects of water resources engineering as the storage in a reservoir must be sufficient to supply water during extended droughts. Typically, observed streamflow is used to stochastically generate multiple realizations of streamflow to estimate the required storage based on the Sequent Peak Algorithm (SQP). The main limitation in this approach is that the parameters of the stochastic model are purely derived from the observed record (limited to less than 80 years of data) which does not have information related to prehistoric droughts. Further, reservoir sizing is typically estimated to meet future increase in water demand, and there is no guarantee that future streamflow over the planning period will be representative of past streamflow records. In this context, reconstructed streamflow records, usually estimated based on tree ring chronologies, provide better estimates of prehistoric droughts, and future streamflow records over the planning period could be obtained from general circulation models (GCMs) which provide 30 year near-term climate change projections. In this study, we developed paleo streamflow records and future streamflow records for 30 years are obtained by forcing the projected precipitation and temperature from the GCMs over a lumped watershed model. We propose combining observed, reconstructed and projected streamflows to generate synthetic streamflow records using a Bayesian framework that provides the posterior distribution of reservoir storage estimates. The performance of the Bayesian framework is compared to a traditional stochastic streamflow generation approach. Findings based on the split-sample validation show that the Bayesian approach yielded generated streamflow traces more representative of future streamflow conditions than the traditional stochastic approach thereby, reducing uncertainty on storage estimates corresponding to higher reliabilities. Potential strategies for improving future streamflow projections and its utility in reservoir sizing and capacity expansion projects are also discussed.  相似文献   
5.
With recent advances in remote sensing, location-based services and other related technologies, the production of geospatial information has exponentially increased in the last decades. Furthermore, to facilitate discovery and efficient access to such information, spatial data infrastructures were promoted and standardized, with a consideration that metadata are essential to describing data and services. Standardization bodies such as the International Organization for Standardization have defined well-known metadata models such as ISO 19115. However, current metadata assets exhibit heterogeneous quality levels because they are created by different producers with different perspectives. To address quality-related concerns, several initiatives attempted to define a common framework and test the suitability of metadata through automatic controls. Nevertheless, these controls are focused on interoperability by testing the format of metadata and a set of controlled elements. In this paper, we propose a methodology of testing the quality of metadata by considering aspects other than interoperability. The proposal adapts ISO 19157 to the metadata case and has been applied to a corpus of the Spanish Spatial Data Infrastructure. The results demonstrate that our quality check helps determine different types of errors for all metadata elements and can be almost completely automated to enhance the significance of metadata.  相似文献   
6.

This paper focuses on the shrinkage behavior of soil specimens involving sand, kaolinite, and kaolinite/sand mixtures subjected to desiccation under controlled conditions. Both, free and restrained shrinkage conditions are studied. The experiments show that pure soils do not curl upon unrestrained shrinkage; however, (under the same conditions) kaolinite/sand mixtures exhibited a marked curling. Furthermore, the mixture with the higher sand content broke through the middle of the sample after displaying a significant curling. Soils subjected to restricted shrinkage developed cracks with slight curling. To simulate the observed behavior, a mechanical model able to reproduce the detachment of the soil sample from the mold is proposed in this work and implemented in a fully coupled hydro-mechanical finite-element code. It is concluded that suction and differential shrinkage are key factors influencing the curling behavior of soils. The proposed framework was able to satisfactorily explain and reproduce the different stages and features of soil behavior observed in the experiments.

  相似文献   
7.
A multiscale strategy is evaluated at a structural level for the analysis of unreinforced masonry structures. The mechanical characterization of the masonry is deduced from homogenization-based micro-scale finite element (FE) models. The derived data are here employed at a structural level via a discrete FE model. The discrete FE model is composed of quadrilateral rigid plates interconnected through vertical and horizontal interfaces. On the interfaces, between adjoining discrete elements, a model that accounts for the in- and out-of-plane behavior of masonry, with damage and plasticity, is adopted. Such interfaces represent the material pre- and post-peak regimes, its orthotropy, and, depending on the micro-model assumed, account by three-dimensional shear effects that are especially important for multi-leaf walls and complex regular textures. The discrete model has been implemented in an advanced structural analysis software where powerful built-in features as the arc-length method, line-search algorithm, and implicit or explicit solver schemes are available. The multi-scale model is applied for the dynamic study of a small English-bond masonry house prototype subjected to a series of consecutive earthquake records. Detailed comparisons between the experimental and numerical data are presented, including the results obtained through a continuous total strain rotating crack model. Quasi-static and dynamic analyses are conducted. Results demonstrate that when enough experimental information is available on the masonry components under tension, shear, and compression regimes, the approach predicts well the seismic structural response in terms of time-history displacements, seismic capacity, and damage patterns. The required computational cost (CPU time) is very attractive.  相似文献   
8.
Manually collected snow data are often considered as ground truth for many applications such as climatological or hydrological studies. However, there are many sources of uncertainty that are not quantified in detail. For the determination of water equivalent of snow cover (SWE), different snow core samplers and scales are used, but they are all based on the same measurement principle. We conducted two field campaigns with 9 samplers commonly used in observational measurements and research in Europe and northern America to better quantify uncertainties when measuring depth, density and SWE with core samplers. During the first campaign, as a first approach to distinguish snow variability measured at the plot and at the point scale, repeated measurements were taken along two 20 m long snow pits. The results revealed a much higher variability of SWE at the plot scale (resulting from both natural variability and instrumental bias) compared to repeated measurements at the same spot (resulting mostly from error induced by observers or very small scale variability of snow depth). The exceptionally homogeneous snowpack found in the second campaign permitted to almost neglect the natural variability of the snowpack properties and focus on the separation between instrumental bias and error induced by observers. Reported uncertainties refer to a shallow, homogeneous tundra-taiga snowpack less than 1 m deep (loose, mostly recrystallised snow and no wind impact). Under such measurement conditions, the uncertainty in bulk snow density estimation is about 5% for an individual instrument and is close to 10% among different instruments. Results confirmed that instrumental bias exceeded both the natural variability and the error induced by observers, even in the case when observers were not familiar with a given snow core sampler.  相似文献   
9.
The extent to which forests, relative to shorter vegetation, mitigate flood peak discharges remains controversial and relatively poorly researched, with only a few significant field studies. Considering the effect purely of change of vegetation cover, peak flow magnitude comparisons for paired catchments have suggested that forests do not mitigate large floods, whereas flood frequency comparisons have shown that forests mitigate frequencies over all magnitudes of flood. This study investigates the apparent inconsistency using field-based evidence from four contrasting field programmes at scales of 0.34–3.1 km2. Repeated patterns are identified that provide strong evidence of real effects with physical explanations. Magnitude and frequency comparisons are both relevant to the impact of forests on peak discharges but address different questions. Both can show a convergence of response between forested and grassland/logged states at the highest recorded flows but the associated return periods may be quite variable and are subject to estimation uncertainty. For low to moderate events, the forested catchments have a lower peak magnitude for a given frequency than the grassland/logged catchments. Depending on antecedent soil saturation, a given storm may nevertheless generate peak discharges of the same magnitude for both catchment states but these peaks will have different return periods. The effect purely of change in vegetation cover may be modified by additional forestry interventions, such as road networks and drainage ditches which, by effectively increasing the drainage density, may increase peak flows for all event magnitudes. For all the sites, forest cover substantially reduces annual runoff.  相似文献   
10.
Páramos, a neotropical alpine grassland-peatland biome of the northern Andes and Central America, play an essential role in regional and global cycles of water, carbon, and nutrients. They act as water towers, delivering water and ecosystem services from the high mountains down to the Pacific, Caribbean, and Amazon regions. Páramos are also widely recognized as a biodiversity and climate change hot spots, yet they are threatened by anthropogenic activities and environmental changes. Despite their importance for water security and carbon storage, and their vulnerability to human activities, only three decades ago, páramos were severely understudied. Increasing awareness of the need for hydrological evidence to guide sustainable management of páramos prompted action for generating data and for filling long-standing knowledge gaps. This has led to a remarkably successful increase in scientific knowledge, induced by a strong interaction between the scientific, policy, and (local) management communities. A combination of well-established and innovative approaches has been applied to data collection, processing, and analysis. In this review, we provide a short overview of the historical development of research and state of knowledge of the hydrometeorology, flux dynamics, anthropogenic impacts, and the influence of extreme events in páramos. We then present emerging technologies for hydrology and water resources research and management applied to páramos. We discuss how converging science and policy efforts have leveraged traditional and new observational techniques to generate an evidence base that can support the sustainable management of páramos. We conclude that this co-evolution of science and policy was able to successfully cover different spatial and temporal scales. Lastly, we outline future research directions to showcase how sustainable long-term data collection can foster the responsible conservation of páramos water towers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号