首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   2篇
  国内免费   1篇
测绘学   3篇
大气科学   6篇
地球物理   26篇
地质学   22篇
海洋学   7篇
天文学   17篇
自然地理   8篇
  2020年   3篇
  2016年   4篇
  2015年   2篇
  2014年   4篇
  2013年   3篇
  2012年   4篇
  2011年   5篇
  2010年   6篇
  2009年   4篇
  2008年   6篇
  2007年   2篇
  2006年   2篇
  2005年   4篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1984年   2篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
排序方式: 共有89条查询结果,搜索用时 15 毫秒
1.
Subsurface tile drainage speeds water removal from agricultural fields that are historically prone to flooding. While managed drainage systems improve crop yields, they can also contribute tothe eutrophication of downstream ecosystems, as tile-drained systems are conduits for nutrients to adjacent waterways. The changing climate of the Midwestern US has already altered precipitation regimes which will likely continue into the future, with unknown effects on tile drain water and nutrient loss to waterways. Adding vegetative cover (i.e., as winter cover crops) is one approach that can retain water and nutrients on fields to minimize export via tile drains. In the current study, we evaluate the effect of cover crops on tile drain discharge and soluble reactive phosphorus (SRP) loads using bi-monthly measurements from 43 unique tile outlets draining fields with or without cover crops in two watersheds in northern Indiana. Using four water years of data (n = 844 measurements), we examined the role of short-term antecedent precipitation conditions and variation in soil biogeochemistry in mediating the effect of cover crops on tile drain flow and SRP loads. We observed significant effects of cover crops on both tile drain discharge and SRP loads, but these results were season and watershed specific. Cover crop effects were identified only in spring, where their presence reduced tile drain discharge in both watersheds and SRP loads in one watershed. Varying effects on SRP loads between watersheds were attributed to different soil biogeochemical characteristics, where soils with lower bioavailable P and higher P sorption capacity were less likely to have a cover crop effect. Antecedent precipitation was important in spring, and cover crop differences were still evident during periods of wet and dry antecedent precipitation conditions. Overall, we show that cover crops have the potential to significantly decrease spring tile drain P export, and these effects are resilient to a wide range of precipitation conditions.  相似文献   
2.
We reconstruct palaeoclimate and palaeoceanography of the Ísafjarðardjúp fjord system from two cores – one from the inner fjord and one near the fjord mouth – while separating the potential overprinting of relative sea‐level (RSL) and local fjord hydrographic changes on these records. The inner fjord core (B997‐339) reflects local fjord hydrography; the outer fjord core (MD99‐2266) reflects the regional oceanic signal. Glacial marine conditions ended at ca. 10 200 cal. a BP, indicated by both ice‐rafted debris records. The other proxy records show spatial and temporal variability within the fjord system. At the inner fjord site (B997‐339) foraminiferal assemblages and the δ18O record indicate lowered RSL between ca. 10 600 and 8900 cal. a BP and document the onset of fjord water overturning at ca. 8900 cal. a BP, which obscured the climate record. At the fjord mouth (MD99‐2266) mass accumulation rates suggest lowered RSL between ca. 10 200 and 5500 cal. a BP and local freshwater and/or reduced salinities of the Irminger Current water masses affected the δ18O signal between ca. 10 200 and 7900 cal. a BP. At MD99‐2266, foraminiferal fauna record the Holocene Thermal Maximum between ca. 8000 and 5700 cal. a BP and the onset of modern oceanic circulation at ca. 7000 cal. a BP. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
3.
In this article, we describe the dynamics of pH, O2 and H2S in the top 5–10 cm of an intertidal flat consisting of permeable sand. These dynamics were measured at the low water line and higher up the flat and during several seasons. Together with pore water nutrient data, the dynamics confirm that two types of transport act as driving forces for the cycling of elements (Billerbeck et al. 2006b): Fast surface dynamics of pore water chemistry occur only during inundation. Thus, they must be driven by hydraulics (tidal and wave action) and are highly dependent on weather conditions. This was demonstrated clearly by quick variation in oxygen penetration depth: Seeps are active at low tide only, indicating that the pore water flow in them is driven by a pressure head developing at low tide. The seeps are fed by slow transport of pore water over long distances in the deeper sediment. In the seeps, high concentrations of degradation products such as nutrients and sulphide were found, showing them to be the outlets of deep-seated degradation processes. The degradation products appear toxic for bioturbating/bioirrigating organisms, as a consequence of which, these were absent in the wider seep areas. These two mechanisms driving advection determine oxygen dynamics in these flats, whereas bioirrigation plays a minor role. The deep circulation causes a characteristic distribution of strongly reduced pore water near the low water line and rather more oxidised sediments in the centre of the flats. The two combined transport phenomena determine the fluxes of solutes and gases from the sediment to the surface water and in this way create specific niches for various types of microorganisms.  相似文献   
4.
Sediment cores from Lake Pupuke in Auckland City, New Zealand, contain a high‐resolution millennial to centennial‐scale record of changing climate and catchment hydrology spanning the past ca. 10 000 years. Here, we focus on the period between 9500 ± 25 and 7000 ± 155 cal. yr BP during which grain size, diatom palaeoecology, biogenic silica concentrations, sediment elemental and carbon isotope geochemistry reflect changes in sediment sources and lake conditions, with a significant event commencing at ca. 8240 cal. yr BP, commensurate with a lowering of lake level, faster erosion rates and increased sediment influx with a duration of ca. 360 yrs. However, the changes in the lake are not reflected in the terrestrial vegetation, where the pollen record indicates that podocarp forest dominated the Auckland region, with apparent environmental stability during this part of the early Holocene. The synchronous change in most of the proxies between ca. 8240 and 7880 cal. yr BP at Lake Pupuke indicates the presence of a sustained episode of relatively low lake level and concomitant increased rate of erosion in the early Holocene that appears to be at least partly coeval with the 8200 cal. yr BP meltwater event proposed for the North Atlantic region. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
5.
We investigated microphytobenthic photosynthesis at four stations in the coral reef sediments at Heron Reef, Australia. The microphytobenthos was dominated by diatoms, dinoflagellates and cyanobacteria, as indicated by biomarker pigment analysis. Conspicuous algae firmly attached to the sand grains (ca. 100 μm in diameter, surrounded by a hard transparent wall) were rich in peridinin, a marker pigment for dinoflagellates, but also showed a high diversity based on cyanobacterial 16S rDNA gene sequence analysis. Specimens of these algae that were buried below the photic zone exhibited an unexpected stimulation of respiration by light, resulting in an increase of local oxygen concentrations upon darkening. Net photosynthesis of the sediments varied between 1.9 and 8.5 mmol O2 m−2 h−1 and was strongly correlated with Chl a content, which lay between 31 and 84 mg m−2. An estimate based on our spatially limited dataset indicates that the microphytobenthic production for the entire reef is in the order of magnitude of the production estimated for corals. Photosynthesis stimulated calcification at all investigated sites (0.2–1.0 mmol Ca2+ m−2 h−1). The sediments of at least three stations were net calcifying. Sedimentary N2-fixation rates (measured by acetylene reduction assays at two sites) ranged between 0.9 to 3.9 mmol N2 m−2 h−1 and were highest in the light, indicating the importance of heterocystous cyanobacteria. In coral fingers no N2-fixation was measurable, which stresses the importance of the sediment compartment for reef nitrogen cycling.  相似文献   
6.
The occurrence of a freshwater lens in the Paraguayan Chaco, 900 km away from the ocean, is reported. It is located underneath sandstone hills, surrounded by lowlands with predominantly saline groundwater. Its geometry was delineated using geoelectrical and electromagnetic investigations. The unusual height of the fresh groundwater level can be attributed to the presence of a confining layer at depth. The lens receives its recharge exclusively from rainfall during the hot and humid summer months. It predominantly contains water predating the atmospheric atomic bomb tests, some of it probably up to a thousand or more years old. The water balance shows that extraction currently does not exceed recharge in normal years. However, the available volume of groundwater leaves little room for a further increase of extraction in the future. Recharge is augmented by return flow from thousands of latrines and cess pits, and this has lead to widespread contamination of the groundwater by faecal bacteria.  相似文献   
7.
8.
9.
Atlantic Water flow through the Barents and Kara Seas   总被引:2,自引:0,他引:2  
The pathway and transformation of water from the Norwegian Sea across the Barents Sea and through the St. Anna Trough are documented from hydrographic and current measurements of the 1990s. The transport through an array of moorings in the north-eastern Barents Sea was between 0.6 Sv in summer and 2.6 Sv in winter towards the Kara Sea and between zero and 0.3 Sv towards the Barents Sea with a record mean net flow of 1.5 Sv. The westward flow originates in the Fram Strait branch of Atlantic Water at the Eurasian continental slope, while the eastward flow constitutes the Barents Sea branch, continuing from the western Barents Sea opening.About 75% of the eastward flow was colder than 0°C. The flow was strongly sheared, with the highest velocities close to the bottom. A deep layer with almost constant temperature of about −0.5°C throughout the year formed about 50% of the flow to the Kara Sea. This water was a mixture between warm saline Atlantic Water and cold, brine-enriched water generated through freezing and convection in polynyas west of Novaya Zemlya, and possibly also at the Central Bank. Its salinity is lower than that of the Atlantic Water at its entrance to the Barents Sea, because the ice formation occurs in a low salinity surface layer. The released brine increases the salinity and density of the surface layer sufficiently for it to convect, but not necessarily above the salinity of the Atlantic Water. The freshwater west of Novaya Zemlya primarily stems from continental runoff and at the Central Bank probably from ice melt. The amount of fresh water compares to about 22% of the terrestrial freshwater supply to the western Barents Sea. The deep layer continues to the Kara Sea without further change and enters the Nansen Basin at or below the core depth of the warm, saline Fram Strait branch. Because it is colder than 0°C it will not be addressed as Atlantic Water in the Arctic Ocean.In earlier decades, the Atlantic Water advected from Fram Strait was colder by almost 2 K as compared to the 1990s, while the dense Barents Sea water was colder by up to 1 K only in a thin layer at the bottom and the salinity varied significantly. However, also with the resulting higher densities, deep Eurasian Basin water properties were met only in the 1970s. The very low salinities of the Great Salinity Anomaly in 1980 were not discovered in the outflow data. We conclude that the thermal variability of inflowing Atlantic water is damped in the Barents Sea, while the salinity variation is strongly modified through the freshwater conditions and ice growth in the convective area off Novaya Zemlya.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号