首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   1篇
海洋学   4篇
  2022年   2篇
  2021年   2篇
排序方式: 共有4条查询结果,搜索用时 62 毫秒
1
1.
微塑料在海洋中的分布、生态效应及载体作用   总被引:2,自引:1,他引:1  
微塑料通常被定义为最大尺寸小于5 mm的塑料碎片.受人类活动的影响,微塑料在海洋环境中广泛存在,引起了人们对其潜在影响的关注.由于粒径较小,微塑料可以通过多种途径进入水生生物体内,沿着食物链迁移、传递,影响海洋生态系统的健康与稳定.在海洋中长期停留的微塑料会吸附环境中的重金属、有机污染物和微生物等,加剧微塑料对海洋生物的毒性作用.本文综述了海洋环境中微塑料的污染特征,微塑料对海洋生物行为、生理等的影响,以及微塑料与微生物、其他污染物的相互作用和复合效应,并对微塑料对海洋环境及生物影响的研究进行了展望.  相似文献   
2.
为改善热带珊瑚岛礁型海洋牧场的珊瑚礁生境,实现生物资源的养护和渔业资源的产出功能,在对海参等高值经济种开展底播增殖前,科学评估其生态容量是防止引发海洋牧场生态风险的重要保证。运用生态系统模型法评估了三亚蜈支洲岛热带珊瑚岛礁海洋牧场花刺参(Stichopus monotuberculatus)的底播增殖容量。根据2020~2021年蜈支洲岛海洋牧场近岛区渔业资源调查与环境因子数据,运用Ecopath with Ecosim 6.6软件构建了该海域的生态系统营养通道模型。研究表明:生态系统各功能组营养级范围介于1~3.52,系统的食物网结构以牧食食物链为主,总能流中有43%的能量来源于碎屑功能组,其在系统总能流中有重要地位。系统的总平均能量传递效率为9.353%,略低于林德曼能量传递效率(10%)。总初级生产量/总呼吸量为3.726,总初级生产量/总生物量为28.834,系统连接指数为0.256,杂食性指数为0.120,系统Finn''s循环指数和平均路径长度分别为2.485%和2.379,表明近岛区生态系统食物网结构较为简单,且系统稳定性和成熟度偏低,易受外界干扰。根据模型评估的花刺参增殖生态容量为110.21 t/km2,是现存量的206 倍,有较大增殖空间,并且达到生态容量后碎屑组的能量再循环利用效率将显著增加,营养级结构能得到进一步优化,系统稳定性及成熟度将有所提高。基于研究结果,可适当采捕与花刺参生态位相近的生物,同时增殖放流其他处于不同营养层次的经济种,从而减少种间竞争,有效利用系统冗余能量,进而扩大花刺参的生态容量,实现海洋牧场的健康可持续发展。  相似文献   
3.
三亚蜈支洲岛海洋牧场拥有丰富的岛礁生物资源。为掌握海洋牧场近岛区的底表大型底栖动物群落组成和分布特征及其影响因子、评估海洋牧场底栖生态系统健康状况, 本研究于2020—2021年进行了底表大型无脊椎动物群落季节变动的调查。结果表明: 近岛珊瑚礁区共鉴定出棘皮动物、软体动物、节肢动物3大门类90种, 其中秋季种类数最多为55种, 夏季种类数最少为16种; 底表大型底栖动物的年平均丰度为0.87±0.26ind.·m-2, 年平均生物量为76.99±34.32g·m-2。群落聚类分析(cluster)与多维排序尺度分析(multidimensional Scaling, MDS)表明, 该区域群落结构季节性差异不显著, 各站位间群落结构受沉积物性质以及人类活动的频繁程度的影响, 形成北部与南部区域2个聚类组。全年的物种丰富度指数d为2.7±1.16, 多样性指数H′为3.14±0.88, 均匀度指数J为0.76±0.11。基于多样性指数H'及多变量海洋生物指数(Multivariate-AZTI′s marine biotic index, M-AMBI)评价指标, 海洋牧场近岛区环境除夏季为轻度污染外, 其他季节均为无污染状态。采用动物丰度与生物量比较曲线(abundance-biomass curves, ABC曲线)法评价底栖动物群落稳定性状况得出, 除冬季以外, 其他季节底表大型底栖动物群落受到一定程度干扰, 尤其是夏季群落结构稳定性较低。建议应持续关注底表大型底栖动物群落变动, 调整、优化涉海休闲旅游活动, 以保证蜈支洲岛海洋牧场生态系统的长期健康与稳定。  相似文献   
4.
为了研究微塑料对黑海参(Holothuria atra)免疫及消化生理的影响,将体重为(47.61±6.97) g的黑海参暴露于添加了不同浓度(0、10~2、10~4、10~6粒/L)聚苯乙烯微塑料的海水中,分析了黑海参的免疫和消化生理指标的变化情况。结果表明,海水中的微塑料浓度对黑海参体腔细胞的数量和吞噬活性,体腔液中酸性磷酸酶(ACP)、溶菌酶(LZM)和超氧化物歧化酶(SOD)活性均有显著影响(P0.05),而对碱性磷酸酶(AKP)活性没有显著影响。随着微塑料浓度升高,黑海参的体腔细胞数量以及体腔液中ACP、LZM和SOD活性呈先持续增加后降低的趋势,体腔细胞数量、体腔液中ACP活性均在104粒/L浓度达到峰值,体腔液中LZM和SOD活性则在10~2粒/L浓度达到峰值;而体腔细胞的吞噬活性随着微塑料浓度的增加而持续增加。黑海参消化道内的淀粉酶受海水中的微塑料浓度的影响显著(P0.05),胰蛋白酶活性和脂肪酶活性没有显著变化。随着微塑料浓度升高,黑海参肠道淀粉酶活性呈先持续增加,在10~4粒/L浓度达到峰值,而后又降低;胰蛋白酶活性随着微塑料浓度的增加持续增加;而三种微塑料浓度下黑海参的脂肪酶活性均低于空白组。由此可见,海水中添加微塑料后,黑海参体内产生了免疫防御反应,并倾向于优先消化淀粉和蛋白质以快速获取能量从而适应周围环境的改变;海水中高浓度的微塑料可能对黑海参的体腔细胞结构产生损伤,导致其免疫防御能力下降,影响其正常生理活动。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号