首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
大气科学   2篇
地质学   5篇
海洋学   7篇
  2022年   1篇
  2021年   1篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  1999年   1篇
排序方式: 共有14条查询结果,搜索用时 296 毫秒
1.
The data are presented on total nitrogen dioxide (NO2) content in the atmosphere from 1979 to 2009 at the high-mountain scientific station located in the unpolluted area in the North Caucasus at the height of 2070 m above the sea level (43.7° N, 42.7° E). The total content of NO2 was measured on the basis of attenuation of direct solar radiation over slope pathways after the sunrise and before the sunset. Characteristics features are analyzed of temporal variability of total NO2 content in the atmosphere related to its diurnal and seasonal variations, 11-year solar activity, volcanic eruptions, quasi-biennial oscillations of tropical circulation, and the El Niño effect.  相似文献   
2.
Izvestiya, Atmospheric and Oceanic Physics - Results of long-term measurements and an analysis of the temporal variability of the total contents (TC) of O3 and NO2 at the Kislovodsk High-Altitude...  相似文献   
3.
4.
5.
Using results of ground-based spectrometric measurements, we analyze the anomalies in the stratospheric contents of O3 and NO2 in the Moscow region related to the sudden stratospheric warming and associated distortion of the stratospheric circumpolar vortex in early February 2010 and to the latitudinal displacement of the vortex towards the European sector in late March 2011 before the final spring warming. In the former case, the O3 concentration increased up to 85% and the stratospheric column NO2 content increased twice; in the latter case, the O3 concentration decreased by a quarter and the NO2 content decreased twice in comparison with average values for the time periods preceding the onsets of the anomalies. Estimates of the statistical correlationship of the stratospheric O3 and NO2 contents with potential vorticity and geopotential have been obtained.  相似文献   
6.
Characteristic features of changes in the vertical distribution and column content of NO2, total ozone, and stratospheric temperature have been revealed as a result of major sudden stratospheric warmings (SSWs). Strong negative anomalies of column NO2, total ozone and stratospheric temperature are caused by the displacement of the stratospheric circumpolar vortex aside from the pole. Strong positive anomalies of column NO2 and total ozone are observed more frequently under SSWs accompanied by splitting of the stratospheric circumpolar vortex and are caused by the transport of stratospheric air from the low latitudes. Major SSWs can lead to significant changes in the vertical profile of NO2. The changes in different stratospheric layers can be opposite to each other when the edge of the polar vortex is over a site of ground-based observations.  相似文献   
7.
Doklady Earth Sciences - This paper reports on the first experimental evidence of the impact of a solar proton event on the stratospheric NO2 content derived from ground-based spectrometric...  相似文献   
8.
In the summer of 2010, the Moscow megacity during two months was within the zone of action of a blocking anticyclone. The accumulation of pollutants in a closed air mass sharply changed the surface air quality. At the end of July-the first half of August, the extreme situation became even more complicated, because the air from regions of turf and grass fires came into Moscow. According to measurement data of the Moscow IAP RAS station, the maximal hourly mean concentrations of chemically active gases NO, NO2, CO, O3, and SO2 were 175.9, 217.4, 15.8, 134.2, and 15.2 ppb, respectively. For NO2 and CO, these values are largest over the entire decadal period of observations at the station and many times exceed the MPC level (see table). The concentrations of greenhouse gases CO2, CH4, and nonmethane hydrocarbons also sharply increased. Analysis of the variability of gas contents in the surface air and in the atmospheric boundary layer showed a close relation between extreme changes in the atmospheric composition and its vertical stratification.  相似文献   
9.
Data on the NO2 content in the vertical column of the atmosphere obtained with the Ozone Monitoring Instrument (OMI) aboard the EOS Aura satellite (United States) in the period from October 2004 to October 2007 are compared with the results of ground-based measurements at the Zvenigorod Scientific Station (55.7° N, 36.8° E). The “unpolluted”; part of the total NO2 content in the atmospheric column, which mostly represents the stratosphere, and the NO2 contents in the vertical column of the troposphere, including the lower layer, which is subject to pollution, are included in the comparison. The correlation coefficient between the results of ground-based and satellite measurements of the “unpolluted” total NO2 content is ∼0.9. The content values measured with the OMI instrument are smaller than the results of ground-based measurements (on average, by (0.30 ± 0.03) × 1015 cm−2 or by (11 ± 1)%). Therms discrepancy between the satellite and ground-based data is 0.6 × 1015 cm−2. The NO2 content in the vertical column of the troposphere from the results of satellite measurements is, on average, (1.4 ± 0.5) × 1015 cm−2, (or about 35%) smaller than from the results of ground-based measurements, and the rms discrepancy between them is about 200%. The correlation coefficient between these data is ∼0.4. This considerable discrepancy is evidently caused by the strong spatial (horizontal) inhomogeneity and the temporal variability of the NO2 field during episodes of pollution, which leads to different (and often uncorrelated) estimates of the NO2 content in the lower troposphere due to different spatial resolutions of ground-based and satellite measurements.  相似文献   
10.
Izvestiya, Atmospheric and Oceanic Physics - The results of an analysis of variations and linear trends in the column content and vertical distribution of NO2 are presented based on 30-year...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号