首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   8篇
  国内免费   2篇
测绘学   3篇
大气科学   7篇
地球物理   38篇
地质学   24篇
海洋学   8篇
天文学   1篇
自然地理   4篇
  2021年   4篇
  2020年   4篇
  2019年   3篇
  2018年   3篇
  2017年   5篇
  2016年   4篇
  2015年   3篇
  2014年   1篇
  2013年   2篇
  2012年   4篇
  2011年   5篇
  2010年   2篇
  2009年   4篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1995年   1篇
  1990年   1篇
  1981年   2篇
  1979年   2篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有85条查询结果,搜索用时 514 毫秒
1.
2.
Stochastic Structural Modeling   总被引:3,自引:0,他引:3  
A consistent stochastic model for faults and horizons is described. The faults are represented as a parametric invertible deformation operator. The faults may truncate each other. The horizons are modeled as correlated Gaussian fields and are represented in a grid. Petrophysical variables may be modeled in a reservoir before faulting in order to describe the juxtaposition effect of the faulting. It is possible to condition the realization on petrophysics, horizons, and fault plane observations in wells in addition to seismic data. The transmissibility in the fault plane may also be included in the model. Four different methods to integrate the fault and horizon models in a common model is described. The method is illustrated on an example from a real petroleum field with 18 interpreted faults that are handled stochastically.  相似文献   
3.
Soil pipes are common and important features of many catchments, particularly in semi‐arid and humid areas, and can contribute a large proportion of runoff to river systems. They may also signi?cantly in?uence catchment sediment and solute yield. However, there are often problems in ?nding and de?ning soil pipe networks which are located deep below the surface. Ground‐penetrating radar (GPR) has been used for non‐destructive identi?cation and mapping of soil pipes in blanket peat catchments. While GPR can identify subsurface cavities, it cannot alone determine hydrological connectivity between one cavity and another. This paper presents results from an experiment to test the ability of GPR to establish hydrological connectivity between pipes through use of a tracer solution. Sodium chloride was injected into pipe cavities previously detected by the radar. The GPR was placed downslope of the injection points and positioned on the ground directly above detected soil pipes. The resultant radargrams showed signi?cant changes in re?ectance from some cavities and no change from others. Pipe waters were sampled in order to check the radar results. Changes in electrical conductivity of the pipe water could be detected by the GPR, without data post‐processing, when background levels were increased by more than approximately twofold. It was thus possible to rapidly determine hydrological connectivity of soil pipes within dense pipe networks across hillslopes without ground disturbance. It was also possible to remotely measure travel times through pipe systems; the passing of the salt wave below the GPR produced an easily detectable signal on the radargram which required no post‐processing. The technique should allow remote sensing of water sources and sinks for soil pipes below the surface. The improved understanding of ?owpath connectivity will be important for understanding water delivery, solutional and particulate denudation, and hydrological and geomorphological model development. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
4.
Since the Mid Pleistocene Revolution, which occurred about one million years ago, global temperatures have fluctuated with a quasi‐periodicity of ca. 100 ka. The pattern of past change in the extent of woodlands, and therefore by inference vegetation carbon storage, has been demonstrated to have a strong positive link with this global temperature change at high and mid latitudes. However, understanding of climate systems and ecosystem function indicates that the pattern of woodland change at low latitudes may follow a fundamentally different pattern. We present output from the intermediate complexity model GENIE‐1, comprising a single transient simulation over the last 800 ka and a 174‐member ensemble of 130 ka transient simulations over the last glacial cycle. These simulations suggest that while vegetation carbon storage in mid–high northern latitudes robustly follows the characteristic ca. 100 ka cycle, this signal is not a robust feature of tropical vegetation, which is subject to stronger direct forcing by the precessional (21 ka) orbital cycle (albeit with a highly uncertain response). We conclude that the correlation of palaeoenvironmental records from low latitudes with global temperature change must be done with caution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
5.
6.
Despite the known importance of water temperature for river ecosystems, the thermal regime of streams and rivers can be heavily modified by afforestation. Although the nature of the heat budget affecting streams in forested catchments shows high variability in space and time, most of the studies of stream temperature response to afforestation have lacked replication among streams. This study examined the impacts of coniferous forest plantations on stream water temperature at six sites (three forested and three open moorland) in the Yorkshire Dales, northern England. Our aim was to test the hypothesis that afforestation would alter the thermal regime of streams, leading to reduced year‐round thermal variability, and cooler summer/warmer winter water temperatures, relative to streams flowing across open moorland. Data collected from April 2007 to March 2009 showed similar thermal dynamics among all six streams over the study period, although variability in forested streams was markedly lower as expected. Mean and maximum daily water temperatures were significantly higher in open moorland streams for much of the year but while some forested streams were warmer than individual moorland streams during winter months (November to February), there was considerable overlap in water temperature between moorland and forest streams. Most stream temperature records showed evidence of low/no winter flow and freezing. These results contrast with many previous studies that have reported warmer temperatures in forested versus open moorland streams during winter, a finding that most likely reflects site‐specific hydrological, geomorphological and climatological influences on water temperature in addition to afforestation. This study demonstrates the need for replication of hydrological monitoring when examining the effects of basin‐scale management practices and provides further evidence for changes in stream thermal regime following afforestation, a practice that is likely to increase in future due to growing demands for increased forest cover in the UK uplands. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
7.
Peatland restoration practitioners are keen to understand the role of drainage via natural soil pipes, especially where erosion has released large quantities of fluvial carbon in stream waters. However, little is known about pipe-to-stream connectivity and whether blocking methods used to impede flow in open ditch networks and gullies also work on pipe networks. Two streams in a heavily degraded blanket bog (southern Pennines, UK) were used to assess whether impeding drainage from pipe networks alters the streamflow responses to storm events, and how such intervention affects the hydrological functioning of the pipe network and the surrounding peat. Pipeflow was impeded in half of the pipe outlets in one stream, either by inserting a plug-like structure in the pipe-end or by the insertion of a vertical screen at the pipe outlet perpendicular to the direction of the predicted pipe course. Statistical response variable η2 showed the overall effects of pipe outlet blocking on stream responses were small with η2 = 0.022 for total storm runoff, η2 = 0.097 for peak discharge, η2 = 0.014 for peak lag, and η2 = 0.207 for response index. Both trialled blocking methods either led to new pipe outlets appearing or seepage occurring around blocks within 90 days of blocking. Discharge from four individual pipe outlets was monitored for 17 months before blocking and contributed 11.3% of streamflow. Pipe outlets on streambanks with headward retreat produced significantly larger peak flows and storm contributions to streamflow compared to pipe outlets that issued onto straight streambank sections. We found a distinctive distance-decay effect of the water table around pipe outlets, with deeper water tables around pipe outlets that issued onto straight streambanks sections. We suggest that impeding pipeflow at pipe outlets would exacerbate pipe development in the gully edge zone, and propose that future pipe blocking efforts in peatlands prioritize increasing the residence time of pipe water by forming surface storage higher up the pipe network.  相似文献   
8.
9.
The dynamics of natural pipe hydrological behaviour in blanket peat   总被引:1,自引:0,他引:1  
Natural soil pipes are found in peatlands, but little is known about their hydrological role. This paper presents the most complete set of pipe discharge data to date from a deep blanket peatland in Northern England. In a 17.4‐ha catchment, we identified 24 perennially flowing and 60 ephemerally flowing pipe outlets. Eight pipe outlets along with the catchment outlet were continuously gauged over an 18‐month period. The pipes in the catchment were estimated to produce around 13.7% of annual streamflow, with individual pipes often producing large peak flows (maximum peak of 3.8 l s?1). Almost all pipes, whether ephemerally or perennially flowing, shallow or deep (outlets > 1 m below the peat surface), showed increased discharge within a mean of 3 h after rainfall commencement and were dominated by stormflow, indicating good connectivity between the peatland surface and the pipes. However, almost all pipes had a longer period between the hydrograph peak and the return to base flow compared with the stream (mean of 23.9 h for pipes, 19.7 h for stream). As a result, the proportion of streamflow produced by the pipes at any given time increased at low flows and formed the most important component of stream discharge for the lowest 10% of flows. Thus, a small number of perennially flowing pipes became more important to the stream system under low‐flow conditions and probably received water via matrix flow during periods between storms. Given the importance of pipes to streamflow in blanket peatlands, further research is required into their wider role in influencing stream water chemistry, water temperature and fluvial carbon fluxes, as well as their role in altering local hydrochemical cycling within the peat mass itself. Enhanced piping within peatlands caused by environmental change may lead to changes in the streamflow regime with larger low flows and more prolonged drainage of the peat. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
10.
This study couples in situ 16O, 17O and 18O isotope and in situ trace element analyses to investigate and characterize the geochemical and textural complexity of magmatic-hydrothermal quartz crystals. Euhedral quartz crystals contemporaneous with mineralization were obtained from four magmatic-hydrothermal ore deposits: El Indio Au–Ag–Cu deposit; Summitville Au–Ag–Cu deposit; North Parkes Cu–Au deposit and Kingsgate quartz-Mo–Bi–W deposit. The internal features of the crystals were imaged using cathodoluminescence and qualitative electron microprobe maps. Quantitative isotopic data were collected in situ using 157 nm laser ablation inductively coupled plasma mass spectrometry (for 40 trace elements in quartz) and sensitive high-resolution ion microprobe (for 3 isotopes in quartz). Imaging revealed fine oscillatory zoning, sector zoning, complex “macromosaic” textures and hidden xenocrystic cores. In situ oxygen isotope analyses revealed a δ18O range of up to 12.4 ± 0.3 ‰ in a single crystal—the largest isotopic range ever ascribed to oscillatory zonation in quartz. Some of these crystals contain a heavier δ18O signature than expected by existing models. While sector-zoned crystals exhibited strong trace element variations between faces, no evidence for anisotropic isotope fractionation was found. We found: (1) isotopic heterogeneity in hydrothermal quartz crystals is common and precludes provenance analysis (e.g., δD–δ18O) using bulk analytical techniques, (2) the trace element signature of quartz is not an effective pathfinder toward noble metal mineralization and (3) in three of the four samples, both textural and isotopic data indicate non-equilibrium deposition of quartz.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号