首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地球物理   5篇
地质学   1篇
海洋学   2篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2011年   2篇
  2008年   1篇
  2006年   2篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Argnani  A.  Tinti  S.  Zaniboni  F.  Pagnoni  G.  Armigliato  A.  Panetta  D.  Tonini  R. 《Marine Geophysical Researches》2011,32(1-2):299-311
Marine Geophysical Research - The southern Adriatic basin is the current foredeep of the Albanide fold-and-thrust belt that runs along the eastern boundary of the Adriatic basin and partly owes its...  相似文献   
2.
The island of Ischia, Gulf of Naples, Italy, like many other volcanic islands is affected by mass failures, that are mainly related to secondary volcanic processes such as slope steepening and seismic shaking. The block resurgence of its main relief, Mount Epomeo, has been recognised to contribute cyclically to mass instability and cause landslides, that occasionally may reach the sea and start tsunamis. In this work we explore the consequences of the Ischia Debris Avalanche (IDA), a flank collapse that occurred in historical times, and involved the whole Mount Epomeo edifice including its submarine portion, and that may have caused gigantic sea waves affecting all the coasts of Ischia and of the Gulf of Naples. The IDA and the generated tsunami have been taken as the worst-case scenario for the occurrence of a new tsunami in the area. They have been simulated through numerical codes developed and maintained by the University of Bologna. The simulation shows that the IDA-induced tsunami attacks severely all the coasts of the Gulf of Naples with the highest waves obtained for the island of Ischia, the island of Capri and the peninsula of Sorrento. The propagation pattern of the IDA tsunami can be used to get hints on the impact that such an event may have had on early populations habiting Gulf of Naples, but also to get clues on the area that could be most severely hit by a tsunami generated by a smaller-scale landslide that may occur in the same source zone.  相似文献   
3.
On December 30, 2002, following an intense period of activity of Stromboli volcano (south Tyrrhenian Sea, Italy), complex mass failures occurred on the northwest slope of the mountain which also involved the underwater portion of the volcanic edifice for a total volume of about 2–3×107 m3. Two main landslides occurred within a time separation of 7 min, and both set tsunami waves in motion that hit the coasts of Stromboli causing injuries to three people and severe damage to buildings and structures. The tsunamis also caused damage on the island of Panarea, some 20 km to the SSE from the source. They were observed all over the Aeolian archipelago, at the island of Ustica to the west, along the northern Sicily coasts to the south as well as along the Tyrrhenian coasts of Calabria to the east and in Campania to the north. This paper presents field observations that were made in the days and weeks immediately following the events. The results of the quantitative investigations undertaken in the most affected places, namely along the coasts of Stromboli and on the island of Panarea, are reported in order to highlight the dynamics of the attacking waves and their impact on the physical environment, on the coastal structures and on the coastal residential zone. In Stromboli, the tsunami waves were most violent along the northern and northeastern coastal belt between Punta Frontone and the village of Scari, with maximum runup heights of about 11 m measured on the beach of Spiaggia Longa. Measured runups were observed to decay rapidly with distance from the source, typical of tsunami waves generated by limited-area sources such as landslides.  相似文献   
4.
Ischia is the emergent top of a large volcanic complex that rises more than 1,000 m above the sea floor, at the north-western end of the Gulf of Naples. Caldera resurgence in the central part of the island has resulted in the formation of differentially displaced blocks, among which Mt. Epomeo (787 m a.s.l.) is the most uplifted. Deformation and slope instability have been recognised as common features induced by a block resurgence mechanism that causes uplift and favours gravitational loading and flank failure. The Monte Nuovo block, a topographic high on the north-western flank of Mt. Epomeo, has recently been interpreted as a block affected by deep-seated gravitational slope deformation. This block may undergo a catastrophic failure in the case of renewal of magmatic activity. This paper investigates the potential failure of the Monte Nuovo block as a rockslide-debris avalanche, the consequent tsunami generation and wave propagation, and discusses the catastrophic effects of such an event. Mobilization-prone volume has been estimated at about 160·106 m3 and would move from a maximum elevation of 400 m a.s.l. The landslide itself would sweep away a densely populated territory as large as 3.5 km2. The highest waves generated by the tsunami, on which this paper is mainly focussed, would hit the northern and western shores of Ischia. However, the high coast would prevent inundation and limit devastation to beaches, harbours and surrounding areas. Most of the tsunami energy would head towards the north-east, hitting the Campania coast. Severe inundation would affect an area of up to 20 km2 around the mouth of the Volturno river, including the urban area of Castel Volturno. In contrast, less energy would travel towards the south, and the Gulf of Naples would be perturbed by long persisting waves of limited damaging potential.  相似文献   
5.
On the 30th of December 2002 two tsunamis were generated only 7 min apart in Stromboli, southern Tyrrhenian Sea, Italy. They represented the peak of a volcanic crisis that started 2 days before with a large emission of lava flows from a lateral vent that opened some hundreds of meters below the summit craters. Both tsunamis were produced by landslides that detached from the Sciara del Fuoco. This is a morphological scar and is the result of the last collapse of the northwestern flank of the volcanic edifice, that occurred less than 5 ka b.p. The first tsunami was due to a submarine mass movement that started very close to the coastline and that involved about 20×106 m3 of material. The second tsunami was engendered by a subaerial landslide that detached at about 500 m above sea level and that involved a volume estimated at 4–9×106 m3. The latter landslide can be seen as the retrogressive continuation of the first failure. The tsunamis were not perceived as distinct events by most people. They attacked all the coasts of Stromboli within a few minutes and arrived at the neighbouring island of Panarea, 20 km SSW of Stromboli, in less than 5 min. The tsunamis caused severe damage at Stromboli.In this work, the two tsunamis are studied by means of numerical simulations that use two distinct models, one for the landslides and one for the water waves. The motion of the sliding bodies is computed by means of a Lagrangian approach that partitions the mass into a set of blocks: we use both one-dimensional and two-dimensional schemes. The landslide model calculates the instantaneous rate of the vertical displacement of the sea surface caused by the motion of the underwater slide. This is included in the governing equations of the tsunami, which are solved by means of a finite-element (FE) technique. The tsunami is computed on two different grids formed by triangular elements, one covering the near-field around Stromboli and the other also including the island of Panarea.The simulations show that the main tsunamigenic potential of the slides is restricted to the first tens of seconds of their motion when they interact with the shallow-water coastal area, and that it diminishes drastically in deep water. The simulations explain how the tsunamis that are generated in the Sciara del Fuoco area, are able to attack the entire coastline of Stromboli with larger effects on the northern coast than on the southern. Strong refraction and bending of the tsunami fronts is due to the large near-shore bathymetric gradient, which is also responsible for the trapping of the waves and for the persistence of the oscillations. Further, the first tsunami produces large waves and runup heights comparable with the observations. The simulated second tsunami is only slightly smaller, though it was induced by a mass that is approximately one third of the first. The arrival of the first tsunami is negative, in accordance with most eyewitness reports. Conversely, the leading wave of the second tsunami is positive.  相似文献   
6.
The M w = 9.1 mega-thrust Sumatra–Andaman earthquake that occurred on December 26, 2004, was followed by a devastating tsunami that killed hundreds of thousands of people and caused catastrophic effects on human settlements and environments along many coasts of the Indian Ocean, where even countries very far from the source were affected. One of these cases is represented by the Republic of Seychelles, where the tsunami reached the region about 7 h after the earthquake and produced relevant damages, despite the country was more than 4,500 km far from the seismic source. In the present work, we present and discuss a study of the 2004 Sumatra tsunami by means of numerical simulations with the attention focused on the effects observed at the Seychelles Archipelago, a region never previously investigated with this approach. The case is interesting since these islands lay on a very shallow oceanic platform with steep slopes so as the ocean depth changes from thousands to few tens of meters over short distances, with significant effects on the tsunami propagation features: the waves are strongly refracted by the oceanic platform and the tsunami signal is modified by the introduction of additional frequencies. The study is used also to validate the UBO-TSUFD numerical code on a real tsunami event in the far field, and the results are compared with the available observations, i.e., the sea level time series recorded at the Pointe La Rue station, Mahé Island, and run-up measurements and inundation lines surveyed few weeks after the tsunami at Praslin Island, where the tsunami hit during low tide. Synthetic results are found in good agreement with observations, even though some of the observations remain not fully solved. Moreover, simulations have been run in high-tide condition since the 2004 Sumatra tsunami hitting at high tide can be taken as the worst-case scenario for the Seychelles islands and used for tsunami hazard and risk assessments.  相似文献   
7.
Stromboli is an Italian volcanic island known for its persistent state of activity, which leads to frequent mass failures and consequently to frequent tsunamis ranging from large (and rare) catastrophic events involving the entire southern Tyrrhenian Sea to smaller events with, however, extremely strong local impact. Most of tsunamigenic landslides occur in the Sciara del Fuoco (SdF) zone, which is a deep scar in the NW flank of the volcano, that was produced by a Holocene massive flank collapse and that is the accumulation area of all the eruptive ejecta from the craters. Shallow-water bathymetric surveys around the island help one to identify submarine canyons and detachment scars giving evidence of mass instabilities and failures that may have produced and might produce tsunamis. The main purpose of this paper is to call attention to tsunami sources in Stromboli that are located outside the SdF area. Further, we do not touch on tsunami scenarios associated with gigantic sector collapses that have repeat times in the order of several thousands of years, but rather concentrate on intermediate size tsunamis, such as the ones that occurred in December 2002. Though we cannot omit tsunamis from the zone of the SdF, the main emphasis is on the elaboration of preliminary scenarios for three more possible source areas around Stromboli, namely Punta Lena Sud, Forgia Vecchia and Strombolicchio, with the aim of purposeful contributing to the evaluation of the hazard associated with such events and to increase the knowledge of potential threats affecting Stromboli and the nearby islands of the Aeolian archipelago. The simulations show that tsunami sources outside of the SdF can produce disastrous effects. As a consequence, we recommend that the monitoring system that is presently operating in Stromboli and that is focussed on the SdF source area be extended in order to cover even the other sources. Moreover, a synoptic analysis of the results from all the considered tsunami scenarios leads to a very interesting relation between the tsunami total energy and the landslide potential energy, that could be used as a very effective tool to evaluate the expected tsunami size from estimates of the landslide size.  相似文献   
8.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号