首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
大气科学   1篇
海洋学   2篇
自然地理   1篇
  2013年   1篇
  2006年   1篇
  1997年   1篇
  1991年   1篇
排序方式: 共有4条查询结果,搜索用时 93 毫秒
1
1.
2.
Abstract

The Barents Sea is divided into a northern and a southern part by the Polar Front (at about 75–76° N) where Atlantic waters descend under Arctic waters. Near to and north of the Polar Front, the spring bloom of phytoplankton is triggered by the stability induced in the upper 20 m by the melting of ice. The pycnocline is too strong to be eroded by wind. Primary productivity after the bloom is therefore small and largely regenerative. Underneath the pycnocline there is a 3–5 m thick layer characterized by dense, slow‐growing algal populations. New productivity north of the Polar Front is no more than 40 g C m?2 a?1.

In permanently open waters south of the Polar Front, the spring bloom starts in early May. Rhythmic wind‐induced mixing related to the atmospheric low‐pressure belt reaches an average 40–60 m depth in the growth season, and secondary phytoplankton maxima may arise. As a result, new annual productivity is more than doubled, i.e. 90 g C m?2 a?1, relative to the same system without wind. Although productivity is highest south of the Polar Front, it is more concentrated north of it, in the sense that high new production is mainly related to a 20–50 km wide belt that sweeps the area following the ice edge northwards while the ice melts through the summer.  相似文献   
3.
4.
Brief overviews of the Arctic’s atmosphere, ice cover, circulation, primary production and sediment regime are given to provide a conceptual framework for considering panarctic shelves under scenarios of climate variability. We draw on past ‘regional’ studies to scale-up to the panarctic perspective. Within each discipline a synthesis of salient distributions and processes is given, and then functions are noted that are critically poised and/or near transition and thereby sensitive to climate variability and change. The various shelf regions are described and distinguished among three types: inflow shelves, interior shelves and outflow shelves. Emphasis is on projected climate changes that will likely have the greatest impact on shelf-basin exchange, productivity and sediment processes including (a) changes in wind fields (e.g. currents, ice drift, upwelling and downwelling); (b) changes in sea ice distribution (e.g. radiation and wind regimes, enhanced upwelling and mixing, ice transport and scour resuspension, primary production); and (c) changes in hydrology (e.g. sediment and organic carbon delivery, nutrient supplies). A discussion is given of the key rate-controlling processes, which differ for different properties and shelf types, as do the likely responses; that is, the distributions of nutrients, organic carbon, freshwater, sediments, and trace minerals will all respond differently to climate forcing.A fundamental conclusion is that the changes associated with light, nutrients, productivity and ice cover likely will be greatest at the shelf-break and margins, and that this forms a natural focus for a coordinated international effort. Recognizing that the real value of climate research is to prepare society for possible futures, and that such research must be based both on an understanding of the past (e.g. the palaeo-record) as well as an ability to reliably predict future scenarios (e.g. validated models), two recommendations emerge: firstly, a comprehensive survey of circumpolar shelf-break and slope sediments would provide long-term synchronous records of shelf-interior ocean exchange and primary production at the shelf edge; secondly, a synoptic panarctic ice and ocean survey using heavy icebreakers, aircraft, moorings and satellites would provide the validation data and knowledge required to properly model key forcing processes at the margins.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号