首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
地球物理   1篇
地质学   7篇
海洋学   12篇
  2022年   1篇
  2017年   1篇
  2016年   6篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
排序方式: 共有20条查询结果,搜索用时 31 毫秒
1.
Intensive observations using hydrographical cruises and moored sediment trap deployments during 2010 and 2012 at station K2 in the North Pacific Western Subarctic Gyre (WSG) revealed seasonal changes in δ 15N of both suspended and settling particles. Suspended particles (SUS) were collected from depths between the surface and 200 m; settling particles by drifting sediment traps (DST; 100–200 m) and moored sediment traps (MST; 200 and 500 m). All particles showed higher δ 15N values in winter and lower in summer, contrary to the expected by isotopic fractionation during phytoplankton nitrate consumption. We suggest that these observed isotopic patterns are due to ammonium consumption via light-controlled nitrification, which could induce variations in δ 15N(SUS) of 0.4–3.1 ‰ in the euphotic zone (EZ). The δ 15N(SUS) signature was reflected by δ 15N(DST) despite modifications during biogenic transformation from suspended particles in the EZ. δ 15N enrichment (average: 3.6 ‰) and the increase in C:N ratio (by 1.6) in settling particles suggests year-round contributions of metabolites from herbivorous zooplankton as well as TEPs produced by diatoms. Accordingly, seasonal δ 15N(DST) variations of 2.4–7.0 ‰ showed a significant correlation with primary productivity (PP) at K2. By applying the observed δ 15N(DST) vs. PP regression to δ 15N(MST) of 1.9–8.0 ‰, we constructed the first annual time-series of PP changes in the WSG. This new approach to estimate productivity can be a powerful tool for further understanding of the biological pump in the WSG, even though its validity needs to be examined carefully.  相似文献   
2.
Abstract: Two mineralization stages, stage I and stage II, have been identified from textural, mineralogical and crosscutting relationships in gold ore from the Nansatsu-type gold deposits of Kasuga, Iwato and Akeshi. Mineralization age of each stage in each deposit was determined with paleomagnetic methods on 432 specimens from 312 oriented samples. As results, mineralization ages of stage I of each deposit fall in the same period, the reversed polarity subchron of 4.18–3.58 Ma, and those of stage II are limited in the normal and reversed polarity subchrons of 3.58–3.22 Ma. Contrasting with previous results based only on K-Ar ages, our conclusion shows that these Nansatsu-type gold deposits were formed contemporaneously.  相似文献   
3.
We deployed a profiling buoy system incorporating a fast repetition rate fluorometer in the western subarctic Pacific and carried out time-series observations of phytoplankton productivity from 9 June to 15 July 2006. The chlorophyll a (Chl a) biomass integrated over the euphotic layer was as high as 45–50 mg Chl a m−2 in the middle of June and remained in the 30–40 mg Chl a m−2 range during the rest of observation period; day-to-day variation in Chl a biomass was relatively small. The daily net primary productivity integrated over the euphotic layer ranged from 144 to 919 mg C m−2 day−1 and varied greatly, depending more on insolation rather than Chl a biomass. In addition, we found that part of primary production was exported to a 150-m depth within 2 days, indicating that the variations in primary productivity quickly influenced the organic carbon flux from the upper ocean. Our results suggest that the short-term variability in primary productivity is one of the key factors controlling the carbon cycle in the surface ocean in the western subarctic Pacific.  相似文献   
4.
Abstract: The Milyang pyrophyllite deposit, which is embedded in the Late Cretaceous Yuchon Group of the Kyongsang Supergroup, is one of the largest hydrothermal clay deposits in the Kyongsang basin, southeast Korea. Host rocks of the deposit are porphyritic andesite lava and minor andesitic lapilli tuff. In the Milyang district, a hydrothermally altered zone is about 2 × 3 km in extent; we can recognize the concentric arrangement of advanced argillic, propylitic, and sericitic alteration zones from the central to peripheral parts of the zone. The Milyang pyrophyllite deposit forms a part of the advanced argillic alteration zone. The Milyang pyrophyllite deposit is subdivided into the following four zones based on mineral assemblages: the pyrophyllite zones 1, 2, 3, and the silicified zone. The pyrophyllite zone 1, which occupies the central part of the deposit, comprises mainly pyrophyllite, kaolinite, and diaspore without quartz. Diaspore nodules often concentrate in beds 40–50 cm thick. Andalusite, dumortierite, and tourmaline locally occur as network veins, crack‐filler, or small spherulitic spots. The Al2O3 content of the ore ranges from 27 to 36 wt%. The pyrophyllite zone 2, which constitutes a major part of the deposit, comprises mainly pyrophyllite, kaolinite, and quartz. The Al2O3 content of the ore ranges from 15 to 24 wt%. The pyro‐phyllite zone 3 is the hematite‐rich marginal facies of the deposit. The silicified zone, which occurs as beds and septa, is mostly composed of quartz with minor pyrophyllite and kaolinite; the SiO2 contents range from 79 to 90 wt%. Comparing chemical compositions of the high‐Al ores with those of unaltered host andesite, the Fe, Ca, alkalis, HFSE, and HREE contents are significantly depleted, whereas S, B, As, Sr, and LREE are enriched. The hydrothermal alteration of the Milyang pyrophyllite deposit can be classified into the following four stages: 1) extensive sericitic and propylitic alteration, 2) medium‐temperature (200–250°C) advanced argillic alteration, 3) high‐temperature (250–350°C or more) advanced argillic alteration, and 4) retrograde low‐temperature alteration. The heat and some volatile components such as B and S would be derived from the Pulguksa Granite intruded underneath the deposit.  相似文献   
5.
6.
7.
The Miocene Kitami rhyolite, consisting of orthopyroxene and plagioclase-phyric lavas and dikes, occurs on the back-arc side of the Kuril arc with coeval basalts and Fe-rich andesites. Temperatures estimated from orthopyroxene–ilmenite pairs exceed 900°C. Although the whole rock compositions of the Kitami rhyolite correspond to S-type granites (i.e., high K, Al, large ion lithophile elements, and low Ca and Sr), Sr–Nd isotope compositions are remarkably primitive, and similar to those of the coeval basalts and andesites. They are distinct from those of lower crustal metamorphic rocks exposed in the area. Comparison of chondrite-normalized rare earth element (REE) patterns between the rhyolite and the basalts and andesites show that the rhyolite is more light REE enriched, but has similar heavy REE contents than the basalts. All rhyolites show negative Eu anomalies. The geochemical data suggest that did not formed by simple dehydration melting of basaltic rocks or fractional crystallization of basaltic magmas. The features of slab-derived fluids expected from recent high pressure experimental studies indicates that mantle wedge is partly metasomatized with “rhyolitic” materials from subducted slabs; it is more likely that very low degree partial melting of the metasomatized mantle wedge formed the rhyolite magma.  相似文献   
8.
Lithium-rich brine in playas is a major raw material for lithium production. Recently, lithium isotopic ratios (δ7Li) have been identified as a tool for investigating water–rock interactions. Thus, to constrain the origin of lithium in playas by the use of its isotopes, we conducted leaching experiments on various lacustrine sediment and evaporite deposit samples collected from playas in Nevada, USA. We determined lithium and strontium isotopic ratios and contents and trace element contents of the leachate, estimated the initial δ7Li values in the water flowing into the playas, and examined the origin of lithium in playas by comparison with δ7Li values of the possible sources. In samples from the playas, δ7Li values show some variation, reflecting differences both in isotopic fractionation during mineral formation and in initial δ7Li value in water flowing into each playa. However, all δ7Li values in this study are much lower than those in river water and groundwater samples from around the world, but they are close to those of volcanic rocks. Considering the temperature dependence of lithium isotopic fractionation between solid and fluid, these results indicate that the lithium concentrated in playas in Nevada was supplied mainly through high-temperature water–rock interaction associated with local hydrothermal activity and not directly by low-temperature weathering of surface materials. This study, which is the first to report lithium isotopic compositions in playas, demonstrates that δ7Li may be a useful tracer for determining the origin of lithium and evaluating its accumulation processes in playas.  相似文献   
9.

The mechanism that controls particulate organic carbon (POC) flux in the deep sea differs depending on the season and sea. The POC produced in the western subarctic North Pacific are known to be transported to the deep sea efficiently, but the direct relationship between the POC flux and physical processes is still unclear. In this study, we evaluated the effect of mesoscale eddies on POC flux in the western subarctic North Pacific. The seasonal and interannual variabilities of POC flux were investigated using data from a time-series sediment trap deployed at 4810 m at station K2 (47°N, 160°E) from 2005 to 2018. POC flux was high during May–November, appearing to reflect spring and fall blooms at the ocean surface. POC flux also showed interannual variability, with twelve peaks that were mostly affected by enhanced bloom just before the peak. Nine peaks of the twelve peaks were affected by mesoscale eddies, which enhanced bloom around K2 by extending the area with a high chlorophyll-a concentration along the coastal region into the offshore region, suggesting that mesoscale eddies strongly impact the interannual variability of POC flux at K2.

  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号