首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   201篇
  免费   18篇
  国内免费   9篇
测绘学   11篇
大气科学   5篇
地球物理   45篇
地质学   126篇
海洋学   12篇
天文学   4篇
综合类   12篇
自然地理   13篇
  2023年   1篇
  2022年   5篇
  2021年   2篇
  2020年   7篇
  2019年   2篇
  2018年   24篇
  2017年   18篇
  2016年   19篇
  2015年   15篇
  2014年   25篇
  2013年   17篇
  2012年   8篇
  2011年   7篇
  2010年   8篇
  2009年   8篇
  2008年   3篇
  2007年   8篇
  2006年   11篇
  2005年   6篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1994年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1973年   1篇
排序方式: 共有228条查询结果,搜索用时 218 毫秒
1.
Constitutive modeling of granular materials has been a subject of extensive research for many years. While the calculation of the Cauchy stress tensor using the discrete element method has been well established in the literature, the formulation and interpretation of the strain tensor are not as well documented. According to Bagi, 1 researchers mostly adopt well‐known continuum or discrete microstructural approaches to calculate strains within granular materials. However, neither of the 2 approaches can fully capture the behavior of granular materials. They are considered complementary to each other where each has its own strengths and limitations in solving granular‐mechanics problems. Zhang and Regueiro 2 proposed an equivalent continuum approach to calculating finite strain measures at the local level in granular materials subjected to large deformations. They used three‐dimensional discrete element method results to compare the proposed strains measures. This paper presents an experimental application of the Zhang and Regueiro 2 approach using three‐dimensional synchrotron microcomputed tomography images of a sheared Ottawa sand specimen. Invariant Eulerian finite strain measures were calculated for representative element volumes within the specimen. The spatial maps of Eulerian octahedral shear and volumetric strain were used to identify zones of intense shearing within the specimen and compared well with maps of incremental particle translation and rotation for the same specimen. The local Eulerian volumetric strain was compared to the global volumetric strains, which also can be considered as an averaging of all local Eulerian volumetric strains.  相似文献   
2.
Abstract

Based on a new elasto-plastic constitutive model, this paper presents a soil–water coupled numerical prediction of the bearing capacity for shallow foundation constructed on Ballina soft clay for unconsolidated undrained (UU) and consolidated undrained (CU) conditions. This elasto-plastic constitutive Shanghai model has an advantage of describing the mechanical behaviour of over-consolidated and structured soil under different loading and drainage conditions, by using one set of material parameter. In this paper, the Shanghai model used for both UU and CU conditions has the same initial parameters obtained from laboratory test results. The loading conditions and consolidation stages vary based on construction details. The predicted bearing pressure-settlement responses for UU and CU, approves the field observation. The phenomenon of gaining the bearing capacity due to consolidation is captured and explained by the use of soil–water coupled numerical analysis with a new elasto-plastic model. The stress strain behaviour, stress paths and the decay of the structure of elements at different depths presented in this study, reveal the mechanism for the difference between UU and CU conditions to understand the foundation behaviour. Effect of the initial degree of soil structure on the bearing capacity is also addressed. Overall, this approach provides the integrated solution for the shallow foundation design problems under short and long-term loadings.  相似文献   
3.
Abar al' Uj (AaU) 012 is a clast‐rich, vesicular impact‐melt (IM) breccia, composed of lithic and mineral clasts set in a very fine‐grained and well‐crystallized matrix. It is a typical feldspathic lunar meteorite, most likely originating from the lunar farside. Bulk composition (31.0 wt% Al2O3, 3.85 wt% FeO) is close to the mean of feldspathic lunar meteorites and Apollo FAN‐suite rocks. The low concentration of incompatible trace elements (0.39 ppm Th, 0.13 ppm U) reflects the absence of a significant KREEP component. Plagioclase is highly anorthitic with a mean of An96.9Ab3.0Or0.1. Bulk rock Mg# is 63 and molar FeO/MnO is 76. The terrestrial age of the meteorite is 33.4 ± 5.2 kyr. AaU 012 contains a ~1.4 × 1.5 mm2 exotic clast different from the lithic clast population which is dominated by clasts of anorthosite breccias. Bulk composition and presence of relatively large vesicles indicate that the clast was most probably formed by an impact into a precursor having nonmare igneous origin most likely related to the rare alkali‐suite rocks. The IM clast is mainly composed of clinopyroxenes, contains a significant amount of cristobalite (9.0 vol%), and has a microcrystalline mesostasis. Although the clast shows similarities in texture and modal mineral abundances with some Apollo pigeonite basalts, it has lower FeO and higher SiO2 than any mare basalt. It also has higher FeO and lower Al2O3 than rocks from the FAN‐ or Mg‐suite. Its lower Mg# (59) compared to Mg‐suite rocks also excludes a relationship with these types of lunar material.  相似文献   
4.
5.
To investigate climate variability in Asia during the last millennium, the spatial and temporal evolution of summer (June–July–August; JJA) temperature in eastern and south-central Asia is reconstructed using multi-proxy records and the regularized expectation maximization (RegEM) algorithm with truncated total least squares (TTLS), under a point-by-point regression (PPR) framework. The temperature index reconstructions show that the late 20th century was the warmest period in Asia over the past millennium. The temperature field reconstructions illustrate that temperatures in central, eastern, and southern China during the 11th and 13th centuries, and in western Asia during the 12th century, were significantly higher than those in other regions, and comparable to levels in the 20th century. Except for the most recent warming, all identified warm events showed distinct regional expressions and none were uniform over the entire reconstruction area. The main finding of the study is that spatial temperature patterns have, on centennial time-scales, varied greatly over the last millennium. Moreover, seven climate model simulations, from the Coupled Model Intercomparison Project Phase 5 (CMIP5), over the same region of Asia, are all consistent with the temperature index reconstruction at the 99 % confidence level. Only spatial temperature patterns extracted as the first empirical orthogonal function (EOF) from the GISS-E2-R and MPI-ESM-P model simulations are significant and consistent with the temperature field reconstruction over the past millennium in Asia at the 90 % confidence level. This indicates that both the reconstruction and the simulations depict the temporal climate variability well over the past millennium. However, the spatial simulation or reconstruction capability of climate variability over the past millennium could be still limited. For reconstruction, some grid points do not pass validation tests and reveal the need for more proxies with high temporal resolution, accurate dating, and sensitive temperature signals, especially in central Asia and before AD 1400.  相似文献   
6.
This paper presents the first paleostress results obtained from displacement and fracture systems within the Lower Eocene sediments at Jabal Hafit, Abu Dhabi Emirate, UAE. Detailed investigation of Paleogene structures at Jabal Hafit reveal the existence of both extensional structures (normal faults) and compressional structures (strike-slip and reverse faults). Structural analysis and paleostress reconstructions show that the Paleogene kinematic history is characterized by the succession of four paleostress stages. Orientation of principal stresses was found from fault-slip data using an improved right-dihedra method, followed by rotational optimisation (TENSOR program).The paleostress results confirm four transtensional tectonic stages (T1–T4) which affected the study area. The first tectonic stage (T1) is characterized by SHmax NW–SE σ2-orientation. This stage produced NW–SE striking joints (tension veins) and E–W to ENE–WSW striking dextral strike-slip faults. The proposed age of this stage is Early Eocene. The second stage (T2) had SHmax N–S σ2-orientation. N–S striking joints and NNE–SSW striking sinistral strike-slip faults, E–W striking reverse faults and N–S striking normal faults were created during this stage. The T2 stage is interpreted to be post-Early Eocene in age. The third stage (T3) is characterized by SHmax E–W σ2-orientation. This stage reactivated the E–W reverse faults as sinistral strike-slip faults and created E–W striking joints and NE–SW reverse faults. The proposed age for T3 is post-Middle Eocene. During the T3 (SHmax E–W σ2-orientation) stage the NNW-plunging Hafit anticline was formed. The last tectonic stage that affected the study area (T4) is characterized by SHmax NE–SW σ2-orientation. During this stage, the ENE–WSW faults were reactivated as sinistral strike-slip and reverse faults. NE–SW oriented joints were also created during the T4 (SHmax NE–SW σ2-orientation) stage. The interpreted age of this stage is post-Middle Miocene time but younger than T3 (SHmax E–W σ2-orientation) stage.  相似文献   
7.
The Ediacaran Jibalah Group comprises volcano‐sedimentary successions that filled small fault‐bound basins along the NW–SE‐trending Najd fault system in the eastern Arabian‐Nubian Shield. Like several other Jibalah basins, the Antaq basin contains exquisitely preserved sedimentary structures and felsic tuffs, and hence is an excellent candidate for calibrating late Ediacaran Earth history. Shallow‐marine strata from the upper Jibalah Group (Muraykhah Formation) contain a diversity of load structures and intimately related textured organic (microbial) surfaces, along with a fragment of a structure closely resembling an Ediacaran frond fossil and a possible specimen of Aspidella. Interspersed carbonate beds through the Muraykhah Formation record a positive δ13C shift from ?6 to 0‰. U‐Pb zircon geochronology indicates a maximum depositional age of ~570 Ma for the upper Jibalah Group, consistent with previous age estimates. Although this age overlaps with that of the upper Huqf Supergroup in nearby Oman, these sequences were deposited in contrasting tectonic settings on opposite sides of the final suture of the East African Orogen.  相似文献   
8.
The surface and bottom waters samples were collected from six locations in Xiamen western sea. The quantified estimation of bacterial production (3H-thymidine method) and observation of bacterial heterotrophic activity (14C-glucose method) have been made in order to have a better understanding of the role of marine bacteria and their activities. The results showed that the mean value of bacterial heterotrophic activity was 9×108 cells/(L.h) in the surface waters and 2.6×108 cells/(L.h) in the bottom waters. The mean value of bacterial production was 38×108 cells/(L.h) in the surface waters and 7.1×108 cells/(L.h) in the bottom waters. The relationship between bacterial production, heterotrophic activity, POC and DOC measured during this survey were discussed. The good understanding of the relationship between bacteria activity and total coliform was addressed.  相似文献   
9.
International Journal of Earth Sciences - Regional seismic reflection profiles, deep exploratory wells, and outcrop data have been used to study the structure and stratigraphic architecture of the...  相似文献   
10.
More than half a century of geological and exploration studies have taken place in the Red Sea area, and still very limited information is available to the geological community in regard to the lithological distribution and the stratigraphic architecture. In this study, extensive well data was used to build the first lithologic and stratigraphic 3D models of the entire Red Sea to better understand the lithological distribution. The potential models have been constrained by bathymetric and geophysical data. Studied data demonstrate that up to 5 km of sediments were deposited in the Red Sea. It is mainly comprised of limestones, evaporites, and shales. Our models show that the evaporite body represents more than 70% of the Red Sea succession. In particular, the evaporite succession seems to be well developed in the southern region. Salt dome features are present and developed close to the margins. The models suggest that domal formation did not enable thick carbonate accumulation in some parts of the basin but the carbonate generally follows the evaporite trend. The models help to identify the main controls leading to salt diapir by highlighting the distribution of this body and the geometry of geological structures. Syn-rift faulting and rifting has been one of the most prominent structural features. Complex interplay of tectono-stratigraphic events played a significant role in shaping the stratigraphic evolution of the Red Sea basin with multiple evolution phases of paleoenvironment and paleogeographic were recognized based on the models. Our synthesis and interpretation support that moderately deep marine conditions dominated in the Miocene, whereas shallow seas dominated the whole basin during the Plio-Pleistocene period as a result of episodic marine invasion. However, lacustrine environment may have prevailed at the Oligocene time in isolated half grabens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号